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Combining topographic data with numerical models

1. New theory, method, etc...
2. Test on a numerical model

3. Apply on topographic data. 1m lidar for Mauna Loa, OpenTopography
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How do landscapes respond to external

forcing?
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Channel gradient

River Traligill, Northwest Highlands, Scotland
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Slope vs. drainage area

Empirical observations show a power law relationship between slope and

drainage area (e.g. Morisawa, 1962; Flint, 1974)

S = ksA
θ
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Problem 1: Data gaps and noise

Typical slope-area plot from Xi’an province, China (Mudd et al., 2018)
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Problem 2: Landscape heterogeneity
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Problem 2: Landscape heterogeneity
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Potential solution: clustering
the river profiles

• Separate channels with different morphology

• ‘Clean up’ extraction of channel metrics, such as

normalised channel steepness
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Clustering of 1D data

• Algorithms developed mostly

for time series data

• Used in diverse fields: climate

science, meteorology,

geophysics, quantitative

finance, economics,

epidemiology, etc...
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Agglomerative clustering
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Agglomerative clustering
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Agglomerative clustering
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Example from environmental context

Global clustering of time series of sea surface temperatures (Rheinwalt et al.,

2017)
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Application to river profiles
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Application to river profiles
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Clustering a river network

Separate channels by stream

order to ensure we are

comparing channels with

similar discharge/drainage

area
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First order streams

Separate channels by stream

order to ensure we are

comparing channels with

similar discharge/drainage

area
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Second order streams

Separate channels by stream

order to ensure we are

comparing channels with

similar discharge/drainage

area
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Third order streams

Separate channels by stream

order to ensure we are

comparing channels with

similar discharge/drainage

area
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Testing the method

• Example from a model landscape with varying

lithology

• Example from Santa Cruz Island, CA
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Varying lithology

North:

harder rocks

K = 6.23×10−5

South: softer

rocks

K = 3.12×10−4
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First order streams
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First order streams
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Pozo catchment, Santa Cruz Island
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Pozo catchment, Santa Cruz Island
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Pozo catchment, Santa Cruz Island
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Pozo catchment, Santa Cruz Island
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Summary

• Clustering can be used to tackle the problem of landscape

heterogeneity

• Data-driven approach with few assumptions

• Potential applications: channel steepness analysis,

hillslope-valley transitions, extraction of alluvial reaches,

etc...
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Questions?
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Quantifying differences

d =

∥∥∥∥X− Y

X + Y

∥∥∥∥/√n
X = Profile 1

Y = Profile 2

n = number of points in profile



Determining the number of clusters
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