PRINCIPLES OF TOPOGRAPHIC CHANGE DETECTION

BY END OF HOUR

You should understand:

- 1. GCD techniques and how they are applied to monitoring rivers
- How to account for unreliability uncertainties in DEMs

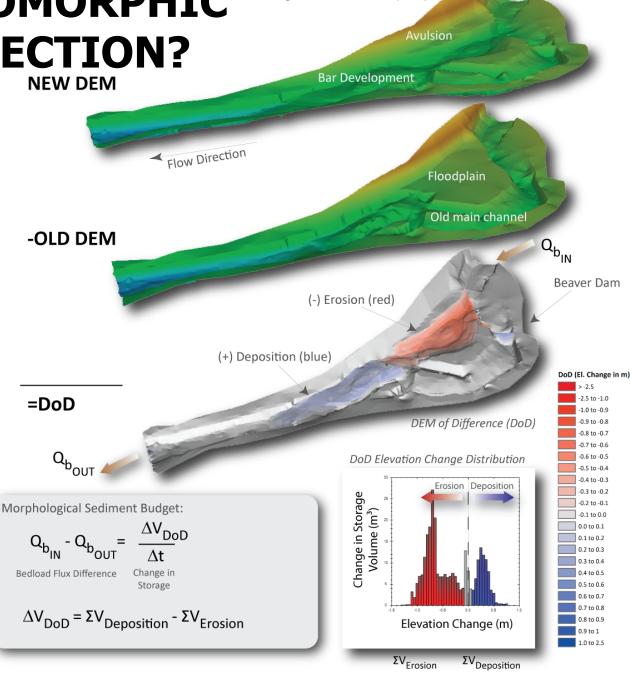
3. How to interpret DoDs

DoD = DEM of Difference =

GCD = Geomorphic Change Detection TCD = *Topographic* Change Detection

PRINCIPLES OF TOPOGRAPHIC CHANGE DETECTION

- At its heart TCD is a signal to noise problem
 - Best applied when signal is big and obvious and noise is negligible
 - Often applied when signal is small and obscured and noise is substantial
- Noise is estimated with error modelling & error propagation
- Apples to Apples Easiest
 - Orthogonality, Concurrency & Dimensional Divisibility
 - Allows this to be a simple subtraction problem with orthogonal rasters
 - Different survey methods okay if accounted for in error modelling
- Thresholding of changes allows separation of signals
 Either discard or flag as 'do not trust' information below threshold
- Always start simple & conservative, and see if signal you are interested in is detectable. Invest in more complex methods


if you believe signal is there, but is obscured...

WHAT IS GEOMORPHIC CHANGE DETECTION?

- Inferences about `net' geomorphic changes resulting from erosion & deposition that are detectable despite noise...
- Inferences made with repeat topography... i.e.

Digital Elevation Model (DEM)

PRINCIPLES OF TOPOGRAPHIC CHANGE DETECTION

- At its heart TCD is a signal to noise problem
- Noise is estimated with error modelling & error propagation
- Apples to Apples Easiest
 - Orthogonality, Concurrency & Dimensional Divisibility
 - Allows this to be a simple subtraction problem with orthogonal rasters
 - Different survey methods okay if accounted for in error modelling
- Thresholding of changes allows separation of signals
 - Either discard or flag as 'do not trust' information below threshold
- Always start simple & conservative, and see if signal you are interested in is detectable. Invest in more complex methods if you believe signal is there, but is obscured...

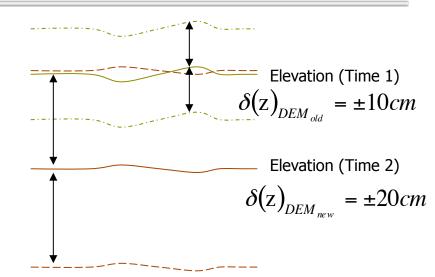
IN A PERFECT WORLD...

• The signal (the change we're trying to detect) is much greater than our noise....

$$\frac{\partial z}{\partial t} >> \delta(z)$$

- In many instances, the noise is of similar magnitude to our noise... $\frac{\partial z}{\partial t} \approx \delta(z)$
- Better in places where vertical changes are large!

- LiDaR : +/- 10 to 25 cm (14 to 36 cm minLoD)
- Terrestrial Laser Scanning: +/- 0.5 to 4 cm (0.7 to 6 cm


min**LoD**)

ERROR PROPAGATION

- Distinguish those changes that are real from noise
- Use standard Error
 Propagation

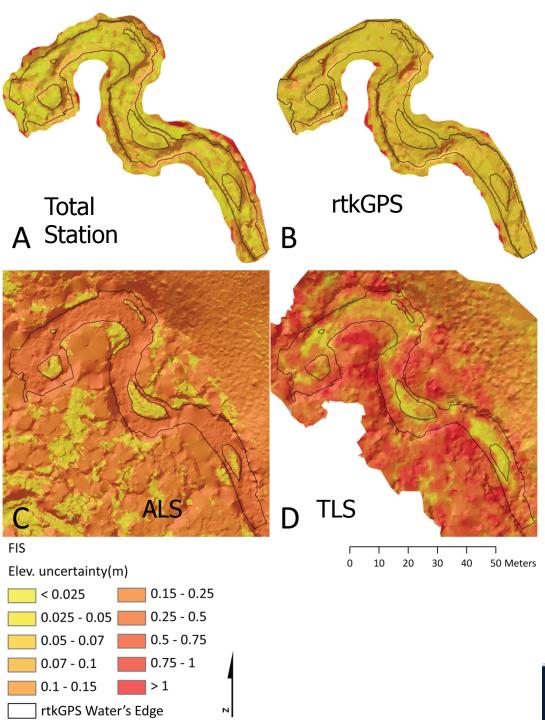
1 14 4

$$\delta(z) = \sqrt{\left(\delta(z)_{DEM_{old}}\right)^2 + \left(\delta(z)_{DEM_{new}}\right)^2}$$

e.g.
$$\delta(z) = \sqrt{(10)^2 + (20)^2} = 22.36$$

22.36 cm \approx 8.8 in

See •Brasington et al (2000): *ESPL* •Lane et al (2003): *ESPL* •Brasington et al (2003): *Geomorphology*


ABITATS CENTER

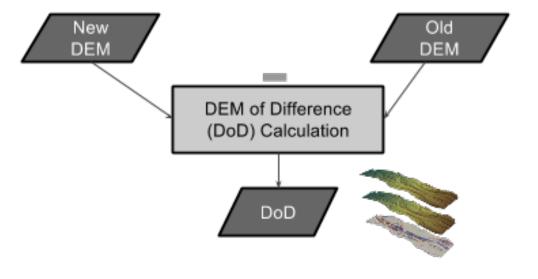
EXAMPLES OF ERROR MODELS

- Greater extent on
 TLS & ALS
- ALS & TLS worthless in water
- ALS best on floodplain

1 19

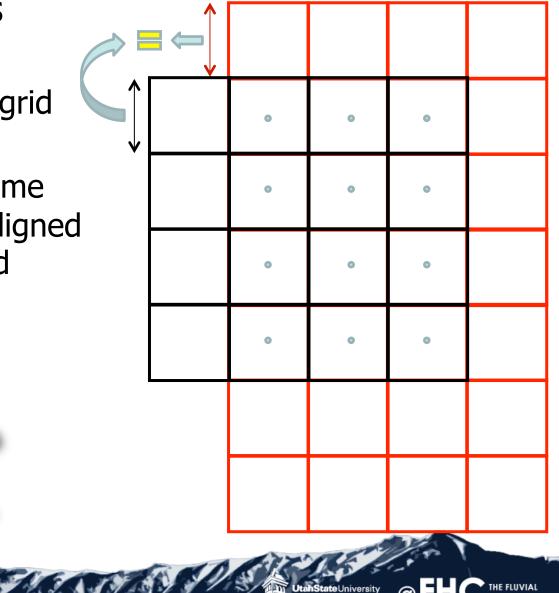
From Bangen et al. (2014) Geomorphology DOI: 10.1016/j.geomorph.2013.10.010

PRINCIPLES OF TOPOGRAPHIC CHANGE DETECTION


- At its heart TCD is a signal to noise problem
- Noise is estimated with error modelling & error propagation
- Apples to Apples Easiest
 - Orthogonality, Concurrency & Dimensional Divisibility
 - Allows this to be a simple subtraction problem with orthogonal rasters
 - Different survey methods okay if accounted for in error modelling
- Thresholding of changes allows separation of signals
 Either discard or flag as 'do not trust' information below threshold
- Always start simple & conservative, and see if signal you are interested in is detectable. Invest in more complex methods if you believe signal is there, but is obscured...

SO... YOUR WHOLE CAREER IS A SIMPLE SUBTRACTION PROBLEM?

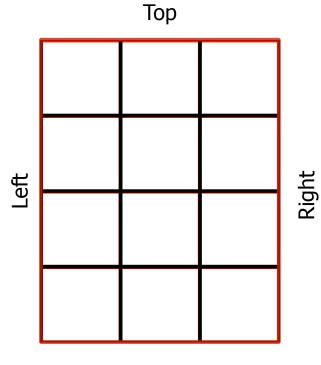
• DoD=DEM_{new} - DEM_{old}


N IN ANYON

UtahStateUniversity

ORTHOGONALITY

- Orthogonal rasters must:
 - Share exact same grid resolution
 - Share the exact same grid centers (i.e. aligned in both easting and northing)



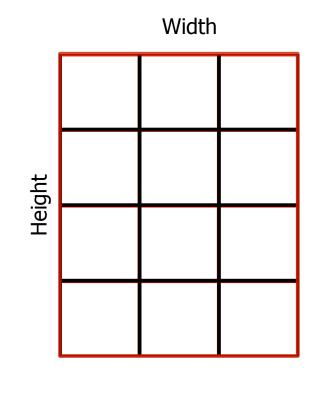
CONCURRENCY

- Grids are orthogonal and:
 - Share *exact* same extents

	perty	Value	~
	Pyramids	level: 1, resampling: Nearest Neighbor	
	Compression	None	
	Status	Permanent	
-	Extent		=
	Тор	4951633.223	
	Left	715469.6149	
	Right	715565.9149	
	Bottom	4951477.423	
-	Spatial Reference	NAD_1983_UTM_Zone_10N	-
Fo	ata Type: File Sy older: C:\Do Inalysis\GCD Inputs\Boundary I		*
Da Fo	ata Type: File Sy older: C:\Do Inalysis\GCD Inputs\Boundary I	, cs\Professional\Manuscripts\Geomorphology\BeaverDamFailures	*
Da Fo	ata Type: File Sy older: C:\Do Inalysis\GCD Inputs\Boundary I	cs\Professional\Manuscripts\Geomorphology\BeaverDamFailures Nov 09 Nov 10\	~

N 12 4 34

Bottom


StateUniversity

THE FLUVIAL HABITATS CENTER

DIMENSIONAL DIVISIBILITY

- Are width & height evenly divisible by cell resolution?
- If not:
 - Does cell resolution or number of rows and columns take the hit?

	al Source Extent Display	Symbology	
Prop	perty	Value	*
	Pyramids	level: 1, resampling: Nearest Neighbor	
	Compression	None	
	Status	Permanent	
=	Extent		E
	Тор	4951633.223	
	Left	715469.6149	
	Right	715565.9149	_
	Bottom	4951477.423	
-	Spatial Reference	NAD_1983_UTM_Zone_10N	-
	a Source		
_			
Di Fo	older: C:\D Analysis\GCD Inputs\Boundary	ystem Raster ocs\Professional\Manuscripts\Geomorphology\BeaverDamFailures Nov 09 Nov 10\ I9_cc_dem1.img	*
Di Fo	older: C:\D Analysis\GCD Inputs\Boundary	ocs\Professional\Manuscripts\Geomorphology\BeaverDamFailures Nov 09 Nov 10\	*

N

INTERNAL DIVISIBILITY CONSISTENCY

• The corner coordinates must be evenly divisible by the cell resolution.

roperty	Value	*
Pyramids	level: 1, resampling: Nearest Neighbor	
Compression	None	
Status	Permanent	
Extent		=
Тор	4951633.223	
Left	715469.6149	
Right	715565.9149	
Bottom	4951477.423	
 Spatial Reference 	NAD_1983_UTM_Zone_10N	-
ata Source		
Data Type: File Folder: C:\ \Analysis\GCD Inputs\Bounda	e System Raster \Docs\Professional\Manuscripts\Geomorphology\BeaverDamFailures ary Nov 09 Nov 10\ v09_cc_dem1.img	*
Data Type: File Folder: C:\ \Analysis\GCD Inputs\Bounda	\Docs\Professional\Manuscripts\Geomorphology\BeaverDamFailures ary Nov 09 Nov 10\	~
Data Type: File Folder: C:\ \Analysis\GCD Inputs\Bounda	\Docs\Professional\Manuscripts\Geomorphology\BeaverDamFailures ary Nov 09 Nov 10\	*
Data Type: File Folder: C:\ \Analysis\GCD Inputs\Bounda	\Docs\Professional\Manuscripts\Geomorphology\BeaverDamFailures ry Nov 09 Nov 10\ v09_cc_dem1.img	•

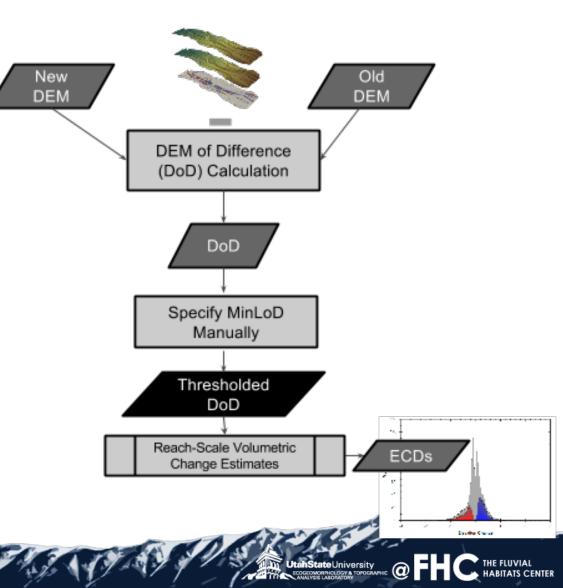
N 18

 More restrictive then dimensional divisibility, but gives rise to nice rounded extents

• Who cares?

PRINCIPLES OF TOPOGRAPHIC CHANGE DETECTION

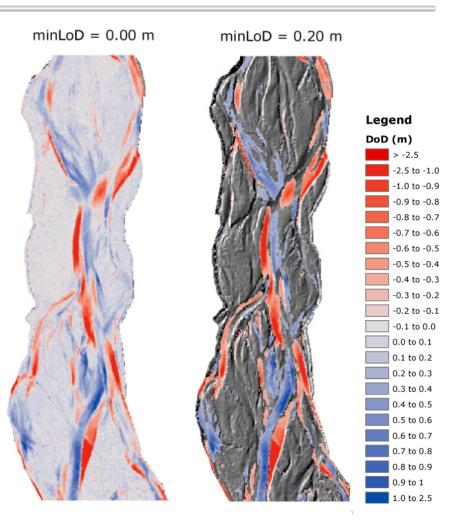
- At its heart TCD is a signal to noise problem
- Noise is estimated with error modelling & error propagation
- Apples to Apples Easiest

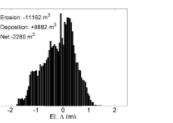

A NY LAY

- Thresholding of changes allows separation of signals
 - Either discard or flag as 'do not trust' information below threshold
- Always start simple & conservative, and see if signal you are interested in is detectable. Invest in more complex methods if you believe signal is there, but is obscured...

WHAT WE'RE DOING TO SIMPLE SUBTRACTION PROBLEM

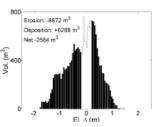
- Just specifying a minimum level of detection (_{min}LoD)
- Throwing away DoD < minLoD
- Calculating some summary statistics
- Multiplying cell by cell DoD by cell area to get volumes
- Looking at histograms of change (ECD)


A 18 21 30



THRESHOLDING... APPLIED SPATIALLY

- Does not matter whether the _{min}LoD is specified, or calculated from error propagation
- Just on a cell-by-cell basis!


N NY AN AVA

E 400

0

PRINCIPLES OF TOPOGRAPHIC CHANGE DETECTION

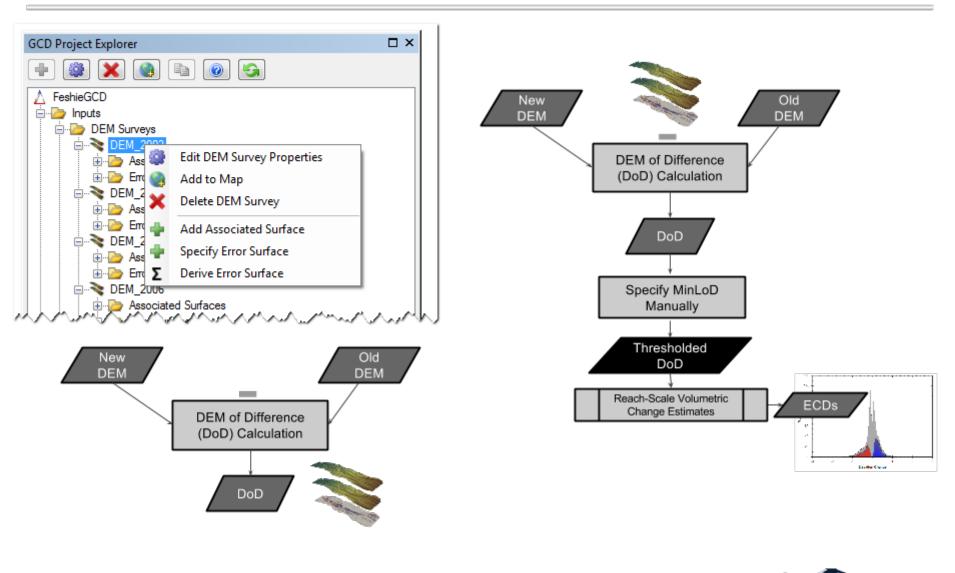
- At its heart TCD is a signal to noise problem
- Noise is estimated with error modelling & error propagation
- Apples to Apples Easiest

N 19 6 5

- Thresholding of changes allows separation of signals
- Always start simple & conservative, and see if signal you are interested in is detectable. Invest in more complex methods if you believe signal is there, but is obscured...

GCD THRESHOLDING

1. Simple defined min LoD


- 2. Propagated Errors
- 3. Probabilistic Confidence Interval

1 19

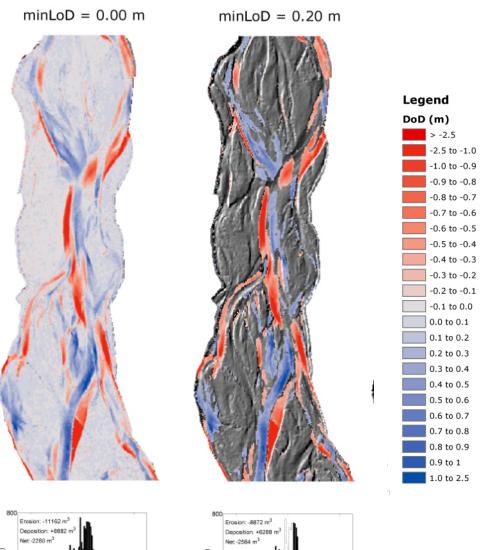
🏄 Change Detec	tion Configuration		×			
Analysis name: Output folder:	DEM2004_DEM2003 Prob 0.95 C:\0 GCD\Feshie\FeshieGCD\Analy	ses\CD\GCD00)11			
New Survey DEM: DEM	_2004	Old Survey	EM_2003			
Spatial Extent of Analysis 2007_SurveyExtent Uncertainty Analysis Method						
 Simple mi Thres Propagate Probabilis 	nimum level of detection hold (m): 0.20					
Us Help	e Bayesian updating: 🎆		Calculate Cancel			

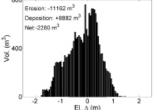
UtanStateUniversity

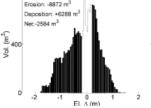
ALL WE DID IN PREVIOUS EXERCISE...

A DE AN DE AN

UtahStateUniversity

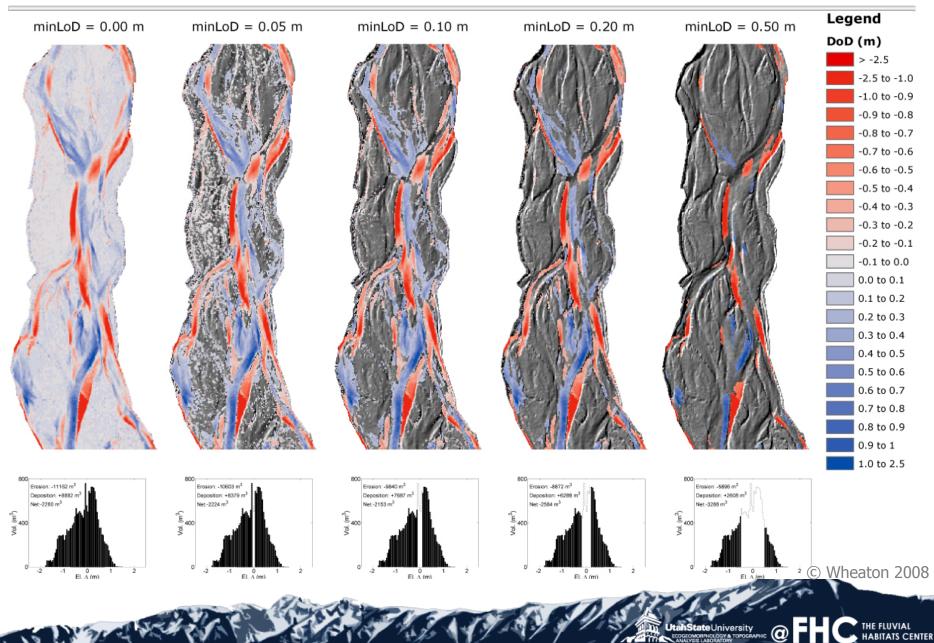

a)


THE FLUVIAL HABITATS CENTER


APPLICATION OF A MINLOD

- You take original DoD, and remove all changes <= minLoD
- For example +/- 20 cm

1 12 1 31 31 CL



VARYING min**LoD THRESHOLDS**

8 18

ECOGEOMORPHOLOGY & TOPOGRAPHIC

EXERCISE: VARYING _{MIN}LOD

 $C:\O_GCD\Excercises\G_Thresholding$

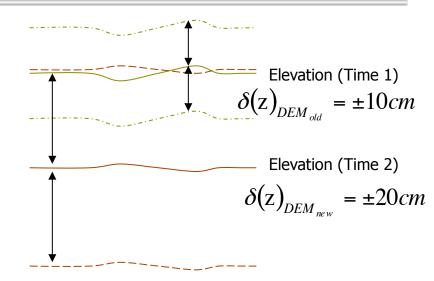
- 1. Start new ArcMap Document
- Create new GCD Project called 'Feshie_Threshold' in I
- 3. Load 2 DEMs provided as surveys
- 4. Do Change Detections with following minLoDs:
 - 0 cm, 5 cm, 10 cm, 20 cm, 50 cm
- 5. Compare the outputs (maps, summaries, elevation change distributions)...

GCD THRESHOLDING

1. Simple defined _{min}LoD

2. Propagated Errors

3. Probabilistic Confidence Interval


🏯 Change Detec	tion Configuration			×			
Analysis name:	DEM2004_DEM2003 Prob 0.95						
	Output folder: C:\0_GCD\Feshie\FeshieGCD\Ana						
New Survey	New Survey		/ey				
DEM: DEM	DEM: DEM_2004		DEM_2003	•			
Error: FIS_3	linput 👻	Error:	FIS_3Input	•			
Spatial Extent of	Spatial Extent of Analysis						
2007_Sur	2007_SurveyExtent						
Uncertainty Ana	lysis Method						
Simple mi	nimum level of detection						
Thres	Threshold (m): 0.20						
Propagate	Propagated errors						
	Probabilistic thresholding						
Confid	ence level (0-1): 0.95 🚔						
🔲 Use	e Bayesian updating: 🏢						
Help			Calculate Can	cel			

MINLOD USING ERROR PROPAGATION

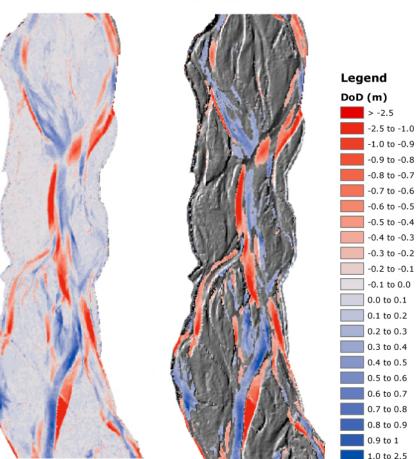
- Distinguish those changes that are real from noise
- Use standard Error
 Propagation

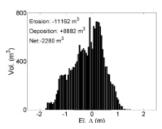
N 19 1

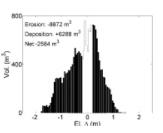
• DEM Errors can vary temporally and spatially

$$\delta(z) = \sqrt{\left(\delta(z)_{DEM_{old}}\right)^2 + \left(\delta(z)_{DEM_{new}}\right)^2}$$

e.g.
$$\delta(z) = \sqrt{(10)^2 + (20)^2} = 22.36$$

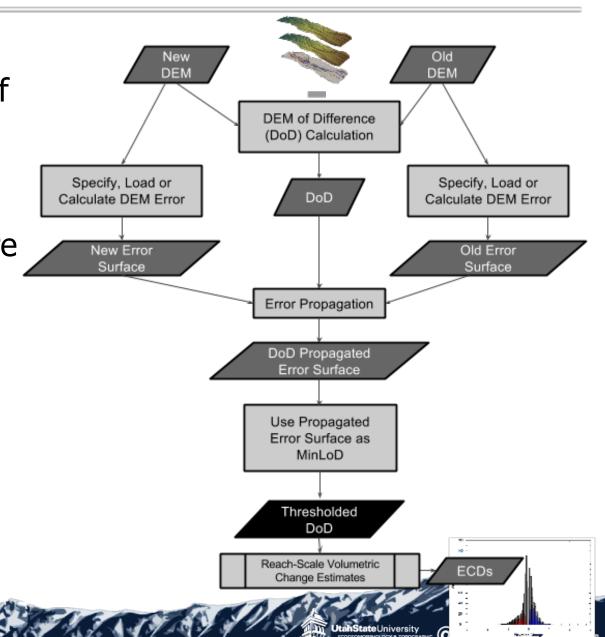

22.36 cm \approx 8.8 in


See •Brasington et al (2000): *ESPL* •Lane et al (2003): *ESPL* •Brasington et al (2003): *Geomorphology*


ERROR PROPAGATION GETS APPLIED SAME WAY AS MINLOD minLoD = 0.00 m

- Does not matter whether the minLoD is specified, or calculated from error propagation
- Just on a cell-by-cell basis!
- In background a perror grid is produced

1 18 2

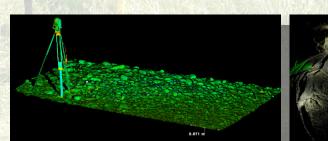


OUR REVISED WORKFLOW: PROPAGATED

 Just come up with separate estimates of error for DEM_{new} & DEM_{old} & propagate using square root of the sum of the square of the errors in quadrature...

A NY LA SUCE SEC

WHAT ARE TYPICAL ERRORS?

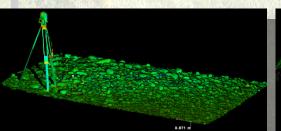

Remotely Sensed or Aerial Surveys

- LiDaR : +/- 12 to 25 cm
- Aerial Photogrammetry : +/- 10 to 15 cm

Ground-Based Surveys

- Total Station Surveys : +/- 2 to 10 cm
- GPS: : +/- 3 to 12 cm
- Terrestrial Laser Scanning: +/-0.5 to 4 cm

SO WHAT WOULD PROPAGATED ERRORS BE?


Remotely Sensed or Aerial Surveys

LiDaR : +/- 12 to 25 cm (17 to 36 cm minLoD)

 Aerial Photogrammetry : +/- 10 to 15 cm(14 to 22 cm _{min}LoD)

Ground-Based Surveys

- Total Station Surveys : +/- 2 to 10 cm (3 to 14 cm _{min}LoD)
- GPS: : +/- 3 to 12 cm (4 to 17 cm _{min}LoD)
- Terrestrial Laser Scanning: +/-0.5 to 4 cm (0.7 to 6 cm min LoD)

EXERCISE: PROPAGATED ERROR

C:\0_GCD\Excercises\G_Thresholding

1. In Same ArcMap Document

N 19

- 2. Go to each DEM Survey, and derive spatially uniform error surface for rtkGPS
- 3. Do Change Detections with Propagated Error
- 4. Compare the outputs (maps, summaries, elevation change distributions)...

GCD THRESHOLDING

Simple defined minLoD Propagated Errors Probabilistic Confidence

Interval

N 19 18 34 54 58

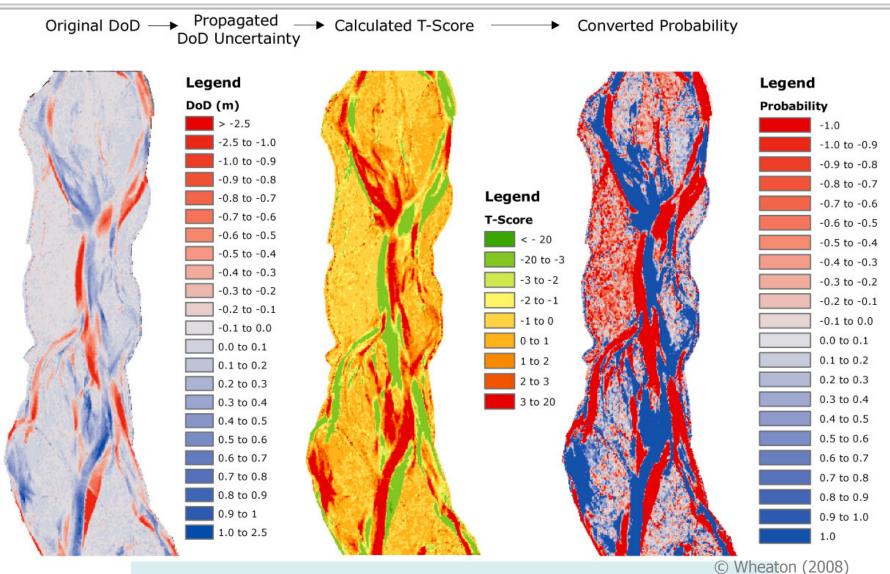
Analysis name: DEM2004_DEM2003 Prob 0.95 C:\0_GCD\Feshie\FeshieGCD\Analyses\CD\GCD0011 Output folder: New Survey Old Survey DEM: DEM 2004 DEM: DEM 2003 Ŧ Ŧ Error: FIS 3Input Error: FIS 3Input Ŧ Ŧ Spatial Extent of Analysis 2007 SurveyExtent Uncertainty Analysis Method Simple minimum level of detection 0.20 Threshold (m): Propagated errors Probabilistic thresholding Confidence level (0-1): 0.95 -🔲 Use Bayesian updating: 🏙 Help Calculate Cancel

Change Detection Configuration

X

THE FLUVIAL HABITATS CENTER

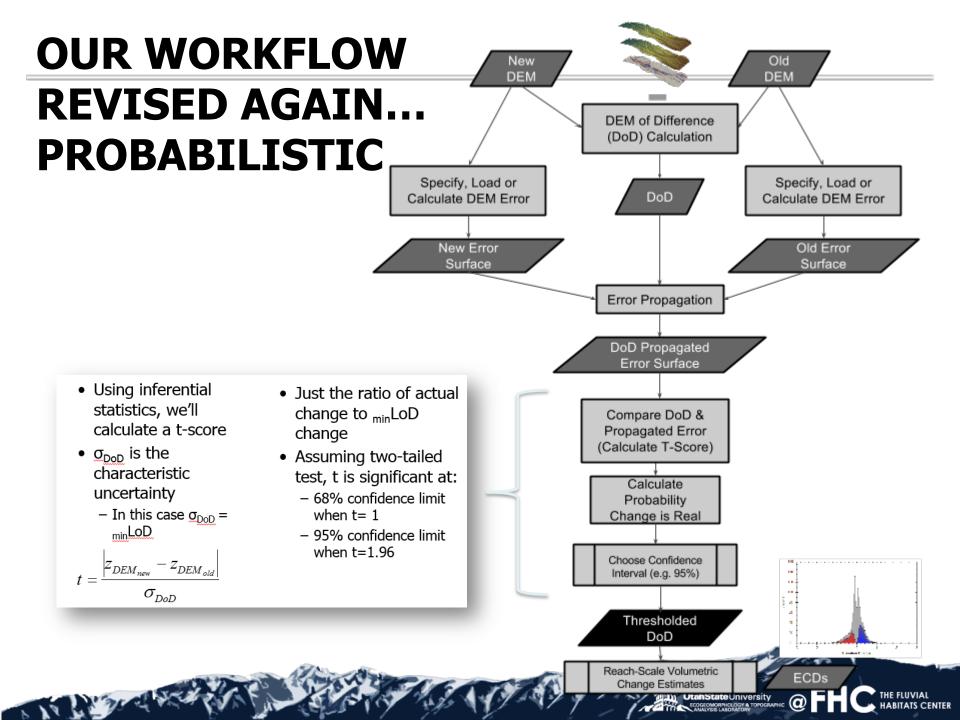
HOW COULD I REPRESENT AS PROBABILITY?


- Using inferential statistics, we'll calculate a t-score
- σ_{DoD} is the characteristic uncertainty
 - In this case $\sigma_{DoD} = m_{min}LoD$

$$t = \frac{\left| z_{DEM_{new}} - z_{DEM_{old}} \right|}{\sigma_{DoD}}$$

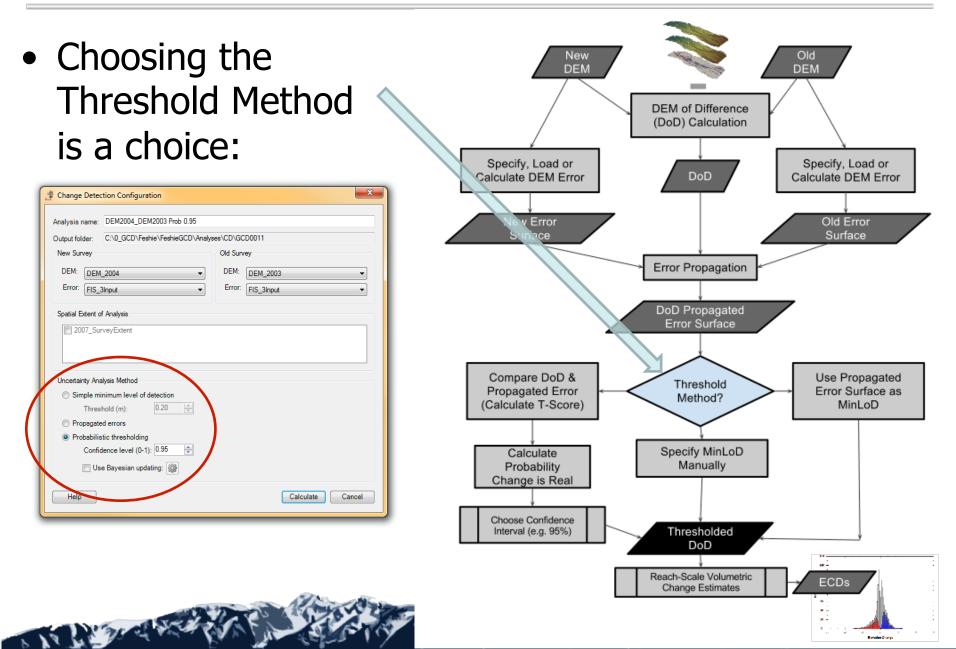
A 18 11 19

- Just the ratio of actual change to _{min}LoD change
- Assuming two-tailed test, t is significant at:
 - 68% confidence limit when t= 1
 - 95% confidence limit when t=1.96


PROBABILITY THAT CHANGE IS REAL

Even when min LoD is spatially constant, probability varies in space... why?

SENSITVITY OF THRESHOLD?



EXERCISE: VARYING PROB.

 $C:\O_GCD\Excercises\G_Thresholding$

- 1. In Same ArcMap Document
- 2. Do Change Detections with Propagated Error for following probabilities:
 - 1. 99%, 95%, 90%, 80%, 66% and 50%
- 3. Compare the outputs (maps, summaries, elevation change distributions)...

WHERE DOES THIS FIT IN GCD?

PRINCIPLES OF TOPOGRAPHIC CHANGE DETECTION

- At its heart TCD is a signal to noise problem
- Noise is estimated with error modelling & error propagation
- Apples to Apples Easiest

N 18 60

- Thresholding of changes allows separation of signals
- Always start simple & conservative, and see if signal you are interested in is detectable. Invest in more complex methods if you believe signal is there, but is obscured...

FUZZY ERROR MODELLING

THE FLUVIAL

HABITATS CENTER

How important is DEM uncertainty in impacting our ability to detect geomorphic change?

: 10.1002/esp.1886

EARTH SURFACE PROCESSES AND LANDFORMS EARTH SUBFACE PROCESSES AND LANDFORMS Earth Suif, Process, Landforms 35, 136–156 (2010) Copyright © 2009 John Wiley & Sone, Ltd. Published online 10 December 2009 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/esp.1886

Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets

Joseph M. Wheaton, James Brasinghory, Stephen E. Darby' and David A. Sear³ ¹ Deparament all Watenbed Sciences, Usah Sate Liniversity, 3210 Old Main Hill, NR 210, Logan, UT 84322, USA ³ Institute of Congraphy & Larb Science, Nehropsych University, Alexystopic, 5V23 3208, UK ⁵ School of Geography, Usiversity Scothampton, Highlield, Southampton, 5017 181, UK

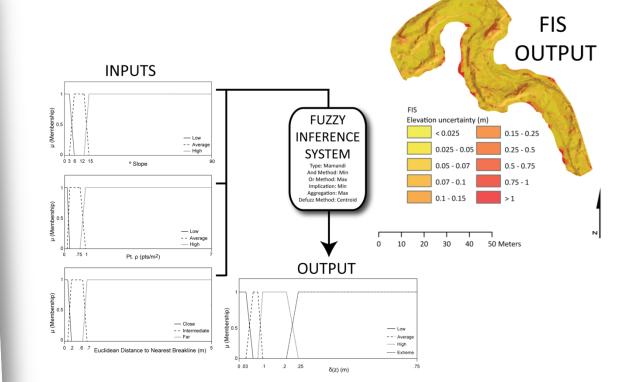
Received 22 September 2008; Revised 26 June 2009; Accepted 6 July 2009 onderse its Joseph M, Wheaton, Department of Watersheed Sciences, Usah State University, 5210 OM Main Hill, NR 210, Logan, UT 84322, USA.

Correspond F-mail: Joe.Wheator

ADSTRACT: Repeat topographic surveys are increasingly becoming more alteriable, and possible at higher spatial resolutions and over greater spatial estimations are transmissioned by the second provide and the second provide (CDA) of the second second provide (CDA) of the second second provide (CDA) of the sec

KDYWORDS: DEM of Difference (DoD); fluvial geomorphology; morphological method; morphological sediment budgeting; River Feshin;

nce system

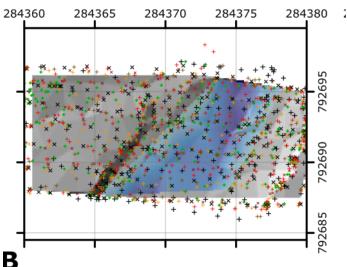

Introduction

N N 1 700

With recent advances in ground-based, boat-based and With recent advances in general-based, baschased and remetely-sensed surviving schedologis, the equid acquisition of toppopyrises of the equid acquisition of the toppopyrises of the equid acquisition of the equiding and lefetting and televeringten, 2007; Milan et al., 2007; Maren and Fontad, 2008; Senshert et al., so and eximating weth-make monitoring genis repeat toppoppic surveys and the advances, 19980 a tractable, alterable approach for monitor-ing applications in both research and probab has been used as an alternative topologic enhances transport directly and a significant of the morphologic enhances transport directly and a significant of the empirical probab has been used as an alternative been applied primarily to repeat surveys of history plan form, consuscience and/or longitudinal profiles

(Brever and Pasamore, 2002; Lans, 1948). However, from the early 1940; Lane et al., 1943), the morphological method has been expanded by the start topographic uarroys from white digital elevation models (DEMa could be constant to perform the digital elevation models) (DEMa could be constant topographic topographic of the Dapplication of the morphological method using DoDs. Uncertainty: In DoDa application of the marphological method has already received considerable american base et al., 1944; Maine and Sear, 1997; Braington et al. 2004; Maine and Sear, 1997; Lane, 1998; Lane et al., 2001. Driving this interest in indi-ted base et al., 1944; Maine and Sear, 1997; Braington et al., 1998; Maine and Sear, 1997; Lane, 1998; Lane et al., 2001. Driving this interest in indiwer and Passmore, 2002; Lane, 1998). However, from

Lane, 1998; Lane et al., 2003; Linving this interest has been the basic question that, given the uncertainty inherent in indi-vidual DEMs, is it possible to distinguish real geomorphic changes from noise? Repeat surveys using rKGPS (Brasington to the surveys using rKGPS) (Brasington changes from noise: Repeat surveys using rescription and et al., 2000), total stations (Milne and Sear, 1997), aerial pho-togrammetry (Winterbottom and Gilvear, 1997; Weitaway et al., 2001), multi-beam echo-sounding (Calder and Mayer,

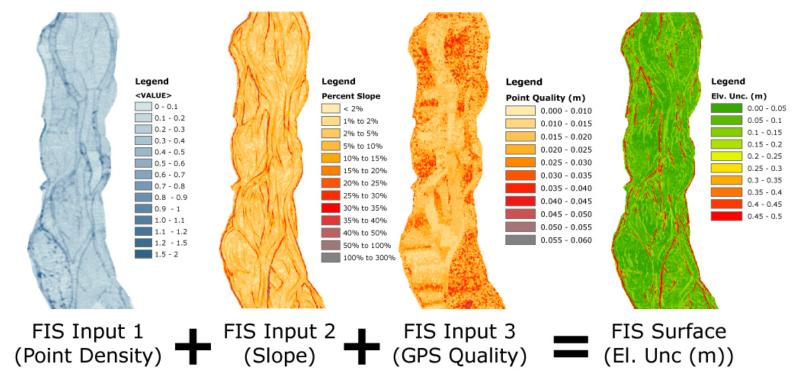

UtahStateUniversity

a

A SIMPLE TWO RULE FUZZY INFERENCE SYSTEM...

1: 10:1002/esp.1886

- Given a point cloud
- Relationship between topographic complexity (slope) and sampling (point density)



1 19

Rule:	Inputs		Output
	Slope	Pt. ρ	$\delta(z)$
	%	${\sf m}/{\sf pts}^2$	m
1	Low	Low	Average
2	Low	Medium	Low
3	Low	High	Low
4	Medium	Low	High
5	Medium	Medium	High
6	Medium	High	Average
7	High	Low	Extreme
8	High	Medium	High
9	High	High	High

UtahStateUniversi

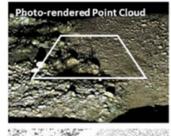
SPATIALLY VARIABLE ERROR MODELLING

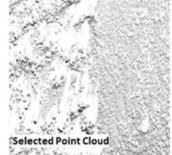
• Readily tractable now!

A 18 10 34

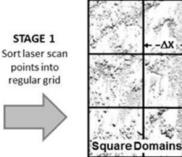
• FIS, needs to be minimally survey method specific and output should be locally calibrated

10.1002/esp.1886

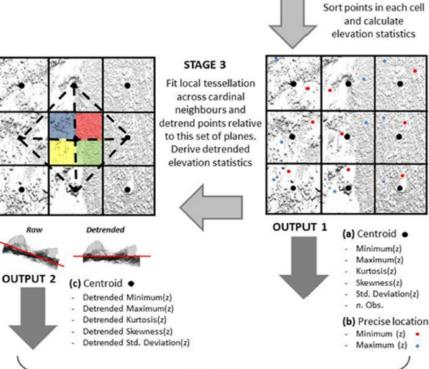

STATISTICAL METHODS


- **To**pographic **P**oint **C**loud Analysis Toolkit (ToPCAT; formerly PC-Tools)
- Look at statistical estimates of variance for elevation
 - Absolute Zmin & Zmax
 - Zmean
 - range

N 12 11 71 71


- stdey The aboslutle σ
- sk Skew
- Count of number of points in cell (i.e. point density)

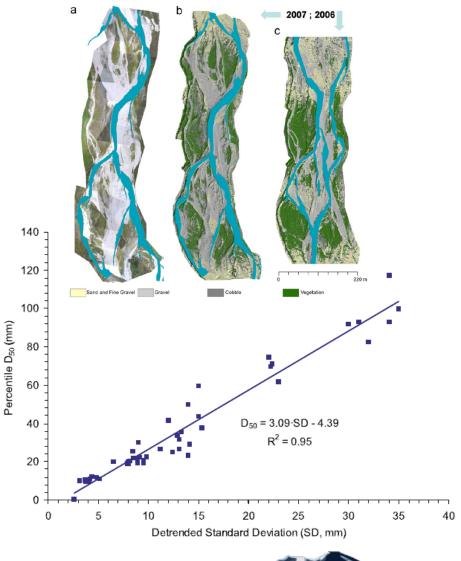
See: Brasington, J., Vericat, D., Rychkov, I., 2012. Modeling river bed morphol roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resources Research 48. DOI: 10.1029/2012wr012223.



ToPCAT **Topographic Point Cloud Analysis Toolkit**

STAGE 2

ΔX



DETRENDED STD. DEV RELATES TO ROUGHNESS

• Simple empirical relationship to convert detrended σ to grain size & roughness...

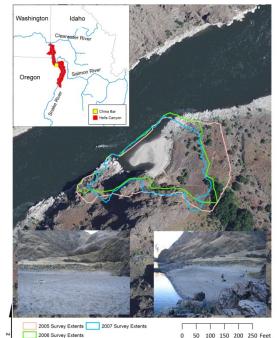
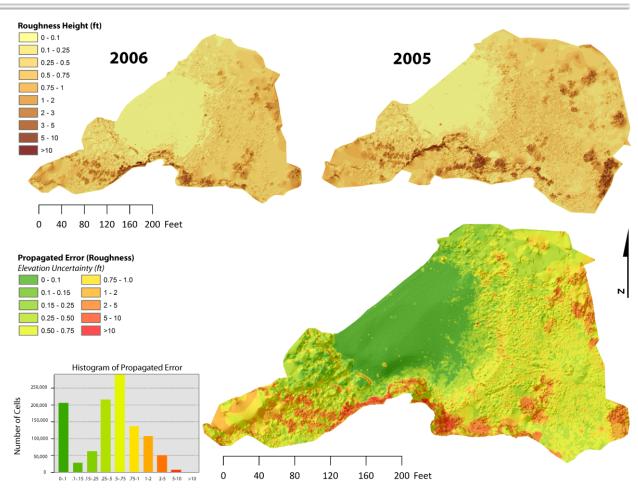


Fig. 3. Measuring patch-scale grain size distribution median (D_{50}) by method of pebble counts.



IF ROUGHNESS IS LIMITING...

 Roughness itself can be used an error model for some point clouds

1 19

Use roughness as proxy for error...

UtahStateUniversit

HABITATS CENTER

4 'CLASSICS' IN YOUNG FIELD OF RASTER GCD

- Lane SN, Chandler JH and Richards KS. 1994. Developments in Monitoring and Modeling Small-Scale River Bed Topography. *Earth Surface Processes and Landforms*. 19(4): 349-368. DOI: <u>10.1002/esp.3290190406</u>.
- McLean DG and Church M. 1999. Sediment transport along lower Fraser River - 2.
 Estimates based on the long-term gravel budget. *Water Resources Research.* 35(8): 2549-2559.
- Lane SN, Westaway RM and Hicks DM. 2003. Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. *Earth Surface Processes and Landforms.* 28(3): 249-271. DOI: <u>10.1002/esp.483</u>.
- Brasington J, Langham J and Rumsby B. 2003. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. *Geomorphology*, 53(3-4): 299-316. DOI:

		5 AND LANDFORMS, VOL. 19, 349-368 (1994)	
DE	EVELOPMENTS IN MONI SCALE RIVE	TORING AND MODELLING SMAI R BED TOPOGRAPHY	L-
Earth Surface Process Earth Surf. Process	esses and Landbrear Landforms 28, 249–271 (2003) Wiley InterScience (www.interscience.wiley.com	n). DOI: 10.1002/esp.483	
Publishese Com	TIMATION OF EROSION	AND DEPOSITION VOLUMES AIDED RIVER USING SYNOPTIC SENSING	J
EI SEVIER	Available online at www.sciencedi காடாலா என்று பாரான Generofitology 53 (2008) 299–	· utomoni inc	caled wide optic sased saing_
	dological sensitivity of me coarse fluvial sedim James Brasington ^{10,4} , Joe Langhe ¹ Department of Geography, University of Carderidge, E ² Department of Geography, University of Hall, seried 11 October 2001; reserved is revised tim 26	am ^b , Barbara Rumsby ^b homming Plane, Cambridge CB2 3EN, UK	ds of ndent had a of the mates on of a has . The ms of patial
internst. The levina but also the available sensing of river cha surveys. However, accuracy, particular of recent research i in Soudhand using detection is assess channel sediment employed here (RMSE=±0.21 information losse of erosism may by ground survey m deposition on the	and y of new sarvey methods capanie or warvey methods by the second second second second second second second second second second second second by the second second second second second second by outputs and second sec	ints of morphological change has received growing recent ing concern over radiational methods of rate detarmination relation, high resolution to prographic monitoring. Remote to aquite anywey data over large areas, data precision and difficult ground starway methods. This paper present sensiti end developed for a reach of a large braided gravel-hed river in RTK. GYS ground surveys. A statistical level of a change took, points, her methodogical sensitivity of the annual ted. Results suggest that while be remote survey methods change detection between which lead to important keicetion show here 60% of channel deposition and 40% stated with photogrammetric monitoring when compared to attention the hypographic signature of widespend, but shallow	2000, ation for of with the of rens). ature in the arthe arthe arthe the arthe the arthe the arthe arthe arthe arthe arthe ature atu
1. Introducti	d ives; DEM; Plotogammety; GPS; Sediment tan ion onship between river channel form and ane of sensitive mutual adjustment in	which river morphology is both a control and con- sequence of fluvial processes. The significance of this interaction requires that a central aspect of modern river science and engineering is the debild specification of channel topography. This requires the set of the set of the set of the set of the set of the specification of channel topography. This requires in the	cuk
* Correspon 1223-333392.	nding author. Tel: +44-1223.339986; fax: +44- hour: [h10036@cam.ac.nk (J. Bnasington). 18 - see from matter D 2003 Howier Science R.V. Al	ment has been emphasized by propagation, floodplain prediction of flood-wave propagation, floodplain inundation and overbank sedimentation through proc-	

TWO TIME DEPENDENT ESTIMATES OF ERROR... PROPAGATED INTO EACH OTHER

- Why are error models different?
- Propagated error used to compare against DoD and calculate T-Score...

1 19 1 19

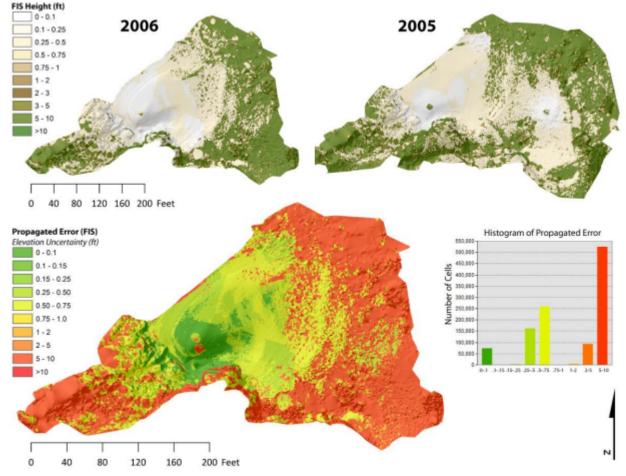
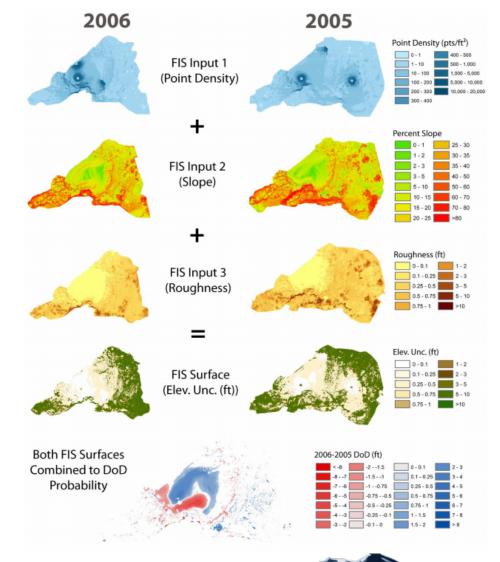
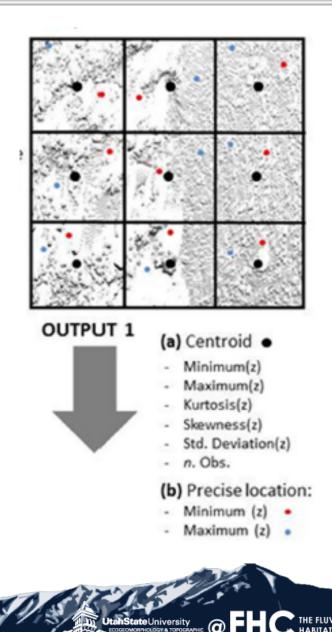



Figure 51 - - Propagated error surface produced from 2006 and 2005 FIS rasters for China Bar.

EXAMPLE OF HOW TO GET THERE...

		Output		
Rule	Slope	Point Density	Roughness	Elevation Uncertainty
1	Low	Sparse	Smooth (sand)	Average
2	Low	Medium	Smooth (sand)	Average
3	Low	Dense	Smooth (sand)	Low
4	Medium	Sparse	Smooth (sand)	High
5	Medium	Medium	Smooth (sand)	Average
6	Medium	Dense	Smooth (sand)	Low
7	High	Sparse	Smooth (sand)	High
8	High	Medium	Smooth (sand)	Average
9	High	Dense	Smooth (sand)	Average
10	Low	Sparse	Rough (Gravel/Cobble)	High
11	Low	Medium	Rough (Gravel/Cobble)	Average
12	Low	Dense	Rough (Gravel/Cobble)	Average
13	Medium	Sparse	Rough (Gravel/Cobble)	Extreme
14	Medium	Medium	Rough (Gravel/Cobble)	High
15	Medium	Dense	Rough (Gravel/Cobble)	Average
16	High	Sparse	Rough (Gravel/Cobble)	Extreme
17	High	Medium	Rough (Gravel/Cobble)	High
18	High	Dense	Rough (Gravel/Cobble)	Average
19	Low	Sparse	Very Rough (Boulder/Veg)	Extreme
20	Low	Medium	Very Rough (Boulder/Veg)	Extreme
21	Low	Dense	Very Rough (Boulder/Veg)	High
22	Medium	Sparse	Very Rough (Boulder/Veg)	Extreme
23	Medium	Medium	Very Rough (Boulder/Veg)	Extreme
24	Medium	Dense	Very Rough (Boulder/Veg)	High
25	High	Sparse	Very Rough (Boulder/Veg)	Extreme
26	High	Medium	Very Rough (Boulder/Veg)	Extreme
27	High	Dense	Very Rough (Boulder/Veg)	Extreme

1 12 11 310

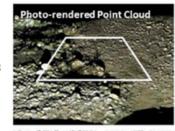

a)

THE FLUVIAL HABITATS CENTER

DECIMATION of BIG POINT CLOUDS...

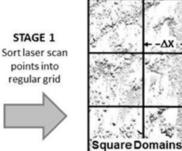
- **To**pographic **P**oint **C**loud **A**nalysis **T**oolkit (ToPCAT; formerly PC-Tools)
- Can be used to go from 1000's to 10,000's of points per square meter to 1 to 10...
- Absolute zMin can be extracted in a window of defined size... That can be used to model elevation

See: Brasington, J., Vericat, D., Rychkov, I., 2012. Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resources Research 48. DOI: <u>10.1029/2012wr012223</u>.

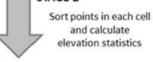

POINT CLOUD STATS

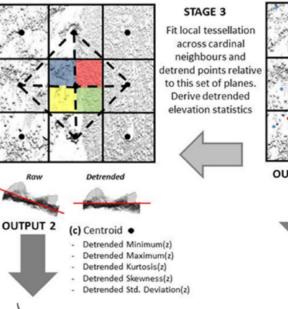
- **To**pographic **P**oint **C**loud Analysis Toolkit (ToPCAT; formerly PC-Tools)
- Look at statistical estimates of variance for elevation
 - Absolute Z_{min} & Z_{max}
 - Z_{mean}

N DAN BUCK


- range
- stdev The absolute σ
- sk Skew
- Count of number of points n in cell (i.e. point density)

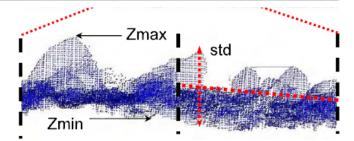
See: Brasington, J., Vericat, D., Rychkov, I., 2012. Modeling river bed morphol roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resources Research 48. DOI: 10.1029/2012wr012223.



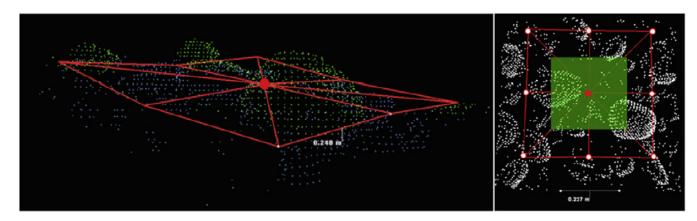

ToPCAT **Topographic Point Cloud Analysis Toolkit**

STAGE 2

-AX


OUTPUT 1 (a) Centroid • Minimum(z)

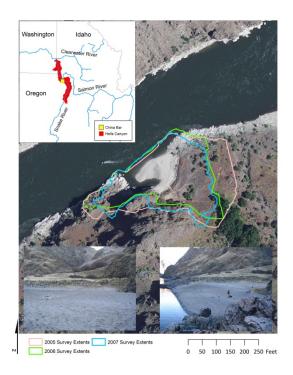
- Maximum(z) Kurtosis(z) Skewness(z) Std. Deviation(z)
 - n. Obs.
 - (b) Precise location
 - Minimum (z) Maximum (z)

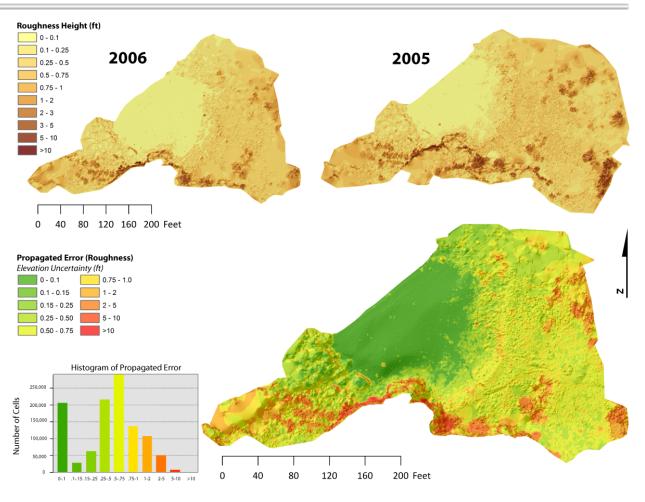

Files written out

HOW IT WORKS...

- Locally detrended stats, relative to a best-fit plane surface through the point cloud
- Zmean_det, stdev-det, sk-det, k det

http://code.google.com/p/ point-cloud-tools/

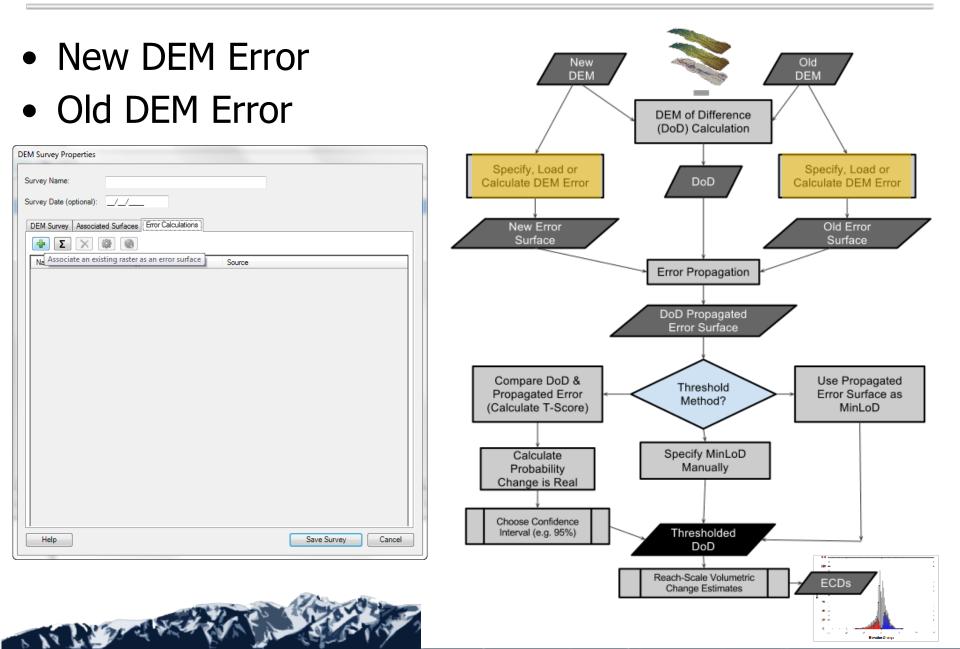



Fig. 2. Triangular mesh laid over grid cells. Green mask represents the current cell. Vertices can be central elevations, centroids or points of minimum elevations. Vertices from neighboring cells are connected by red lines. 3D (left image) and top (right image) views. The facets of the mesh give the local ground slopes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

See: Rychkov I, Brasington J and Vericat D.

A SANDBAR EXAMPLE...

 Roughness changes through time



• Use detrended standard deviation as proxy for roughness and/or error...

© Leary & Wheaton (2012)

ADD ROUGHNESS AS ERROR SURFACE

ALTERNATIVES... PySESA

 PySESA – Python program for spatially explicit spectral analysis

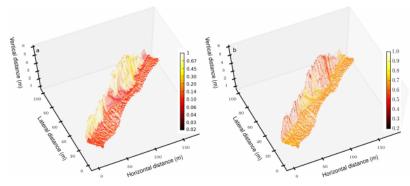


Figure 8: The point cloud shown in Figure 7a, decimated to a $0.25 \times 0.25m$ regular grid by the PySESA program, and colour-coded by: a) spectral root-mean-square variation in amplitude, σ (m); and b) spectral strength ω_2 (m⁴).

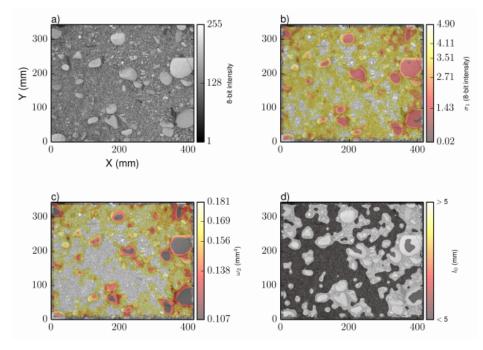


Figure 10: a) 8-bit greyscale intensity image of coarse sand, gravel and pebbles; b) greyscale image overlain by contour map of spectral RMS amplitude, σ_1 (equation 15); c) greyscale image overlain by contour map of spectral strength, ω_2 (equation 12); and d) greyscale image overlain by binary map of where integral lengthscale, l_0 (equation 11) is < (dark) and >5 (light) mm.

PySESA Website: <u>https://dbuscombe-usgs.github.io/pysesa/index.html</u> PYSEA Source code: <u>https://github.com/dbuscombe-usgs/pysesa</u>

From Dan Buscombe (USGS GCMRC)