Aligning point clouds and topographic change detection

Thanks to: Ramon Arrowsmith, Srikanth Saripalli, Aravindhan Krishnan (ASU), Adrian Borsa (Scripps), Craig Glennie (Houston), Alejandro Hinojosa-Corona (CICESE), Tadashi Maruyama (AIST), Austin Elliott, Mike Oskin (UC Davis)

Edwin Nissen (Colorado School of Mines)
Aligning point clouds and topographic change detection

- Multi-temporal topography
- Earthquake examples:
 - scientific motivation
 - aligning (registering) topography data with ICP
 - 2008 Iwate earthquake (Japan)
 - 2011 Fukushima earthquake (Japan)
 - 2010 El Mayor Cucapah earthquake (Mexico)
- Other applications
• There is now a “baseline” of lidar topography on many active faults in the western US
• After an earthquake, repeat lidar data can be collected and differenced
3-D earthquake deformation from repeat lidar
3-D earthquake deformation from repeat lidar

Pre-earthquake point cloud
3-D earthquake deformation from repeat lidar
3-D earthquake deformation from repeat lidar

Post-earthquake LiDAR survey
3-D earthquake deformation from repeat lidar

Post-earthquake point cloud
3-D earthquake deformation from repeat lidar

Pre-earthquake point cloud
3-D earthquake deformation from repeat lidar

The Challenges of LiDAR differencing

- Data are irregularly spaced (we can rasterize them, but lose information doing so)
- There can be large mismatches in point density (legacy datasets vs modern surveys)
- ... and mismatches in data quality and metrics (third party vs research-grade)
- Treatment of vegetation returns in forested areas
3-D earthquake deformation from repeat lidar

- The **iterative closest point** algorithm (ICP) is a method for registering (aligning) irregular point clouds, well known in computer vision and medical imaging.
- ICP minimizes closest point pair distances using iterative **rigid-body transformations**, each one comprising a **translation** $[t_x, t_y, t_z]$ and a **rotation** $[\alpha \beta \gamma]$.

$$\Phi = \begin{pmatrix}
1 & -\gamma & \beta & t_x \\
\gamma & 1 & -\alpha & t_y \\
-\beta & \alpha & 1 & t_z \\
0 & 0 & 0 & 1
\end{pmatrix}$$

ICP iterations = 1
White: Original point cloud
Red: ICP aligned point cloud

pointclouds.org/documentation/tutorials/interactive_icp.php
3-D earthquake deformation from repeat lidar

- The **iterative closest point** algorithm (ICP) is a method for registering (aligning) irregular point clouds, well known in computer vision and medical imaging.
- ICP minimizes closest point pair distances using iterative **rigid-body transformations**, each one comprising a **translation** $[t_x \ t_y \ t_z]$ and a **rotation** $[\alpha \ \beta \ \gamma]$

1. Split both datasets into square cells

2. ICP is run on each equivalent pair of cells.
 The **translation** $[t_x \ t_y \ t_z]$ corresponds to the cell displacement

3. This is repeated for the next pair of cells

Iterative Closest Point algorithm (ICP)

Pre-earthquake cell

Post-earthquake cell
Iterative Closest Point algorithm (ICP)
Iterative Closest Point algorithm (ICP)

Pre-earthquake cell

Post-earthquake cell

Find closest points
Iterative Closest Point algorithm (ICP)

Iterate

Find closest points

Transform point cloud

\[
\phi = \begin{pmatrix}
1 & -\gamma & \beta & t_x \\
\gamma & 1 & -\alpha & t_y \\
-\beta & \alpha & 1 & t_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
Iterative Closest Point algorithm (ICP)

Find closest points

Transform point cloud
Iterative Closest Point algorithm (ICP)

Find closest points

Transform point cloud
Iterative Closest Point algorithm (ICP)

Find closest points

Transform point cloud
Iterative Closest Point algorithm (ICP)

Find closest points

Transform point cloud
Iterative Closest Point algorithm (ICP)

Find closest points

Transform point cloud
Iterative Closest Point algorithm (ICP)

Find closest points
Transform point cloud
Iterative Closest Point algorithm (ICP)

Find closest points

Transform point cloud
Iterative Closest Point algorithm (ICP)

Find closest points

Transform point cloud
Iterative Closest Point algorithm (ICP)

Find closest points
Transform point cloud

earthquake displacement
3-D earthquake deformation from repeat LiDAR point clouds

Caveats

- ICP will not work if there are large changes to the shape of the cell, e.g. through landsliding
- ICP will generate spurious results in areas that are very planar

11 April 2011 Fukushima-Hamadori earthquake

Nissen et al. (2014), *Earth Planet. Sci. Lett.*
11 April 2011 Fukushima-Hamadori earthquake

Toda & Tsutsumi (2013), BSSA
11 April 2011 Fukushima-Hamadori earthquake

[Map showing the area affected by the earthquake with GPS displacements and other active faults indicated.]
11 April 2011 Fukushima-Hamadori earthquake

2006 pre-event 2 m DEM
11 April 2011 Fukushima-Hamadori earthquake

2011 post-event 1 m DEM
11 April 2011 Fukushima-Hamadori earthquake

Photos from Toda & Tsutsumi (2013), BSSA
2005-2011 vertical displacements
2005-2011 vertical displacements

(distance from fault scarp (m))
- Slip at depths of a few hundred meters appears to vary smoothly.
- In many places, only a small proportion of the slip makes it to the surface.
• these rotations are present even in areas with low scarp heights
• suggests fault slip is lost in the very near surface (10s of meters) rather than at depths of kilometers
Indicative of shallow slip (10s – 100s m)

Surface offsets

Darfield rupture (Quigley et al. 2010)

Izmit rupture (Rockwell et al. 2002)

- Slip at depths of a few hundred meters appears to vary smoothly
- In many places, only a small proportion of the slip makes it to the surface
- Reflects off-fault deformation in the shallow subsurface?