
Visual Presentation of Time-Varying Vector Field Data for Earthquakes Using the
Visualization Toolkit

Ben Trube, Jared Coliadis and Han-Wei Shen

1. Introduction

The purpose of this program is to create a method of
answering scientific questions about earthquakes through a
visual presentation of the data. For this project the
particular area of interest is the Whittier-Narrows region of
California, and the data is given as time-varying vector
fields for a simulated earthquake event. From this initial
data properties such as magnitude, normalized vectors, and
particle movement through the field are calculated using
the methods that are described below. This data is then
color-mapped and rendered to a single frame or sequence
of frames to create animations for the whole dataset.

2. Desired Information

For this project scientists were asked what sort of questions
they would like the data to answer. The following are five
questions this program tries to answer:

1. Do the waves in the Whittier-Narrows area follow a
pronounced sediment channel defined in the crustal
structure?

2. Do waves systematically focus toward the centers of
basins, thus providing a physical explanation of the
correlation of amplification factors with basin depth?

3. At which locations do the largest conversions between
wave-types occur?

4. Which regions produce wave reflections?

5. Do strongly shaken basins act as wave sources?

The methods used to attempt to answer these questions are
described in the following sections.

3. Render Methods (General)

Our program uses the Visualization Toolkit (VTK) to
process and render the dataset. VTK has many tools for
performing operations on the data, as well as methods for
rendering the data to the screen, positioning a camera, and
exporting frames to common formats such as BMP and
JPEG. This allows for the development of more interesting
rendering techniques with much of the code for
manipulating and viewing the data already written.

The structure of our code follows an object-oriented
approach as well as trying to keep the render methods as
separate as possible, while still allowing for a base of
common functions that can be used in multiple methods.
Libraries for math functions, conversions, and our VTK
functions were created to keep to this structure.

Render methods are classified as interactive or pre-
rendered. Single frames (one time step typically) tend to

be interactive to allow the user to explore that particular
time-step from all angles and to allow programmers to
choose good camera angles for animations. Renders that
involve more of the dataset are exported directly to
bitmaps that are later compiled into animations. The
exception to this is particle rendering which parses through
all of the dataset to create a interactive single frame.

4. Render Methods (Description of Each)

Normalized Vector-Field Slices

Our first method of rendering the data, this method was
primarily created as a way of ensuring the floating point
data was being input correctly from the binary files.
Originally this method was used to render a three-
dimensional time-step of the vector field, but the amount of
memory required to render this sort of image was
unavailable. It was also determined a three-dimensional
field was not as easy to visually interpret even with better
scaling. Instead a two-dimensional slice of the surface data
was taken to give an idea for how the ground was moving
at any particular moment of the dataset. An instance of
vtkHedgehog was used to show the normalized vectors as
each coordinate in the two-dimensional slice. Particle
rendering was introduced later as a better way of rendering
these vector fields.

Angle-View of a Vector Field Slice using vtkHedgehog

Scalar Magnitude 2D Slices

In this method of rendering we calculate the normal or
magnitude for each vector in the vector field. These values
are stored in a vtkFloatArray and color mapped using a
vtkLookupTable and a vtkImageData structure. Magnitude
data is mapped to color, with blue being low magnitudes
down to 0, and red being higher magnitudes. The range for
most of these images is between 0 and 0.8 m/s, but
narrower ranges provide better views in lower slices. We
do this for each time step in the dataset, creating a
sequence of frames we then compile into an animation.

This creates an effect much like Doppler radar, which

many people, including non-scientists, can relate to. The
first part of the video shows a top-down slice of the wave
movement which can be used to tell us several things about
the dataset. While this image does not incorporate the
sediment data at this time, it does shown the waves
following two different channels or lines from the initial
source point. The intensity of waves to the west (left) of
the screen are of higher intensity and reflect back from
about the edge of the screen.

View of Magnitude Surface Slice at Time-Step 80

Magnitude Volume Rendering

The second part of our video highlights volume rendering.
As with the two-dimensional version, the velocity normal
is calculated for the entire three-dimensional vector field.
Instead of taking slices of the data, the data is blended in a
three-dimensional volume showing the wave activity
throughout the whole dataset. Color ramping is the same
as in 2D slicing but instead of being implemented with a
vtkLookupTable it is implemented with a vtkColorTransfer
function which requires that scalar to color mappings be
provided by the programmer for the whole range of colors,
rather then generating a table from a range of values. The
ColorTransfer function allows for more varied ramping of
colors and is necessary to color Volume Renders. The
scaling for both of these methods can be adjusted to
highlight certain intensities (activity at certain depths is
more intense than others). The image is rendered using
vtkVolumeTextureMapper3D, a volume rendering
implementation using 3D texture mapping.

For 3D volume rendering a texture of the geographical
region is applied onto the surface of the 3D volume render.
In order to achieve higher resolution, sampling limiters in
VTK were switched off in the VTK libraries. Using this
method of rendering we can fly the camera around various
areas of interest during the quake event, and even get a
look inside the volume. By varying opacity features of the
magnitude or the stiffness of the ground can be high-
lighted, though interleaving of those two types of data has
proven difficult in VTK. Both 2D and 3D projections can
be used as discussed to highlight other single value
features such as x, y, and z components of the vectors and
stiffness data.

In addition to providing information about wave reflections
and following sediment channels, volume rendering can

also show how the waves center around basins, and show
how intensity varies and different depths.

View of Time-Step 8000 using volume rendering

Particle Flow Visualization

This method produces single frames that show particle
movement throughout the three dimensional volume. 100-
200 particle positions are chosen at random throughout the
whole volume. For each time step a bounding box is
created where vector magnitude is greater than 0. If a
particle lies within this bounding box a new particle is
dropped and its movement caused by the vector field is
tracked through each time step. Because of the small
velocities of particles these velocities are increased by a
factor of 25,000 in order to see the path without overlap.
Some still shots of these renders are included in the third
part of our video, and can show how seismic waves effect
ground movement throughout the dataset.

Nearest neighbor calculations are used to determine the
vector for each individual particle, but in order to achieve a
more accurate result trilinear interpolation can be
incorporated. Sampling particle movement can also show
particle movement without needing as larger magnification
factors. These methods replace the vtkStreamline
functionality which did not have the ability to deal with
time-varying vector fields.

Zoom of particle flow visualization after 227 time steps

5. Conclusion

The Visualization Toolkit provided many tools for
rendering the data quickly but did require modification and
in some cases replacement in order to render good images.
The methods described above provide a preliminary basis
for understanding the data from which new methods can be
created.

