
VisContest: Visualization of the Terashake Dataset

Ralf Sondershaus∗

WSI / GRIS, University of T̈ubingen, Sand 14, 72076 Tübingen, Germany

Wolfgang Straßer
WSI / GRIS, University of T̈ubingen

1 Introduction

We use direct volume rendering to explore the dataset and to find
answers for the questions of the contest. Although the visualiza-
tions of the Terashake Visualization web page also shows movies
that are created by direct volume rendering, we differ in the chosen
classifications, in the selection of the intervals of the Terashake data
values that are visualized, and in a computed new dataset that ap-
proximates acceleration (i.e. how the velocity changes over time).

Instead of using an existing visualization package (like VTK) we
decided to use our own implementation of a volume renderer for
structured grids. Although it might not have the visual quality of
other packages, we can easily integrate own shaders and use them to
render the Terashake Dataset in the way we want it to be visualized.

The volume renderer basically visualizes a volume with viewplane-
aligned slices which are rendered from back to front and textured
by a 3D texture. Our volume renderer can read 3D textures of dif-
ferent resolutions and data types. But to support the largest possible
texture, we restrict the renderer to read textures of unsigned bytes
only. Using such textures only, the graphics card of our computer
supports a 3D texture of up to 512×512×128 voxels which covers
most parts of the Terashake dataset and frees us from segmenting
the dataset into a series of 3D textures (as it would be done by more
sophisticated renderes of course). We placed the texture into the
northwestern area of the dataset and skipped the southeastern area.

We implemented a collection of programs that convert the original
data into our volume representation. Mostly, the x,y, and z compo-
nents of the velocity vector are converted independently. Firstly, the
original floating point data format of the dataset can be transformed
into an unsigned byte representation. The user can choose an inter-
val I of the original data that is mapped onto the [0,255] unsigned
bate interval. The most interesting parts of the dataset lie within the
interval [−0.1 f ,0.1 f ] (as described later) which are mapped such
that 0 becomes 127. All values that fall outside ofI are clamped to
the interval borders.

Secondly, the acceleration can be approximated by simple dif-
ferences between the values of two consecutive time steps, i.e.
at = vt − vt−1. Thirdly, the values at a specific position can be
written into an ASCII file and displayed like seismograms (using
gnuplot for instance) which helped us a lot to find out what’s going
on in the dataset.

In order to get an orientation within the dataset, the volume renderer
can show meta information like streets and borders of California as
well as a simple map (texture) that we cut out of the VisContest web
page and cropped to align with the dataset. The streets and border
information is read directly from the ASCII files that are provided
at the VisContest web page.

2 Basin Rendering

Instead of extracting isosurfaces for the basins, we store the mater-
ial stiffness (VS value) in a 3D texture (unsigned bytes again). The
minimal and maximal values are mapped to 0 and 255, respectively.

∗e-mail: sondershaus@gris.uni-tuebingen.de

This texture is called masking texture because the fragment shader
uses it to mask different areas of the volume.

A fragment shader accesses the masking texture and merges its val-
ues with the values of the terashake dataset. This enables us to
steer how the dataset values are rendered inside a basin and outside
a basin. Normally, the values that are inside a basin are rendered
with full colors while the values outside a basin are rendered a little
bit darkened where the darkness factor can be freely chosen by the
classification of the masking texture.

Furthermore, a meta texture is rendered on top of the visualization
and shows the basins as red areas. This texture is rendered with
90% transparency and just hints the landscape and the basins.

3 Wave Types

This was the most complex part because wave types interfere with
each other. We analyzed the dataset at different locations and
recorded the seismograms as shown in figure 1. Using these seis-
mograms as a hint, we rendered all X velocity values of the in-
terval [−0.1, ...,0.1] only (X values that are greater or less than
0.1 or−0.1 respectively are clamped) and colored the different ar-
eas using a cartoon-like coloring classification (i.e. discrete color
steps). Thus, we distinguish the wave types by their amplitudes
and choose the classification carefully. The seismograms give hints
about the intervals that separate the colors of different wave types
in the cartoon-like rendering. We found a sepatation value of 0.01
plausible.

The selected classification shows values above 0.01 in bright red
and values below−0.01 in dark blue while the values inbetween
use the colors green, yellow (0-values), and light-blue, see figure 2.
Note that the basin rendering further reduces the brightness of the
colors of all values that are outside of a basin. The values near zero
are rendered fully transparent in order to not disturb the visualiza-
tion while all other values are rendered semi-transparent.

Although this might not correspond to the correct wave types, the
different colors give hints about the changes of the type of a wave.
Red and dark-blue colors correspond to great amplitudes and thus
likely to Rayleigh- and Love-waves while green and light-blue col-
ors correspond to small amplitudes and thus P- and S-waves.

We also tried to get the frequency out of the dataset (using Fourier
or Windowed Fourier Transformations) but found this too time-
consuming and less practicable (although the computed frequen-
cies show up clearly as high frequencies at the beginning and mixed
high-low frequencies in the middle and high frequencies at the end
again; computed using Maple and a windowed Fourier transform of
the seismogram of figure 1, but not added to this material).

4 Reflections

The volume renderer shows the reflections that basically originate
at the borders of the basins. The most effective visualization that
we found used the acceleration datasets although other datasets and
classifications also show this effect. Especially waves with large



amplitudes and low frequencies get reflected when they hit the basin
boundary. Again, the acceleration values are mapped from the in-
terval[−0.1, ...,0.1] to unsigned bytes.

If we compute the differences of the velocities between two con-
secutive time steps, we get something like acceleration that swings
around zero with both negative and positive values as shown in fig-
ure 1b. Because these values swing around 0, they can be easily
separated by a classification that nevertheless has to separate the
value 0. So, using the acceleration instead of the velocity values
shows a more detailled image and highlights all changes of the val-
ues. Note that for instance the x velocity is always below zero at the
first time steps when the ground starts to shake (around time=50)
which is not easily separatable by a classification.

5 Wave Guides and Basins

The waves seem to highly interact with the borders and interior
structures of the basins. This causes them to change their speed
and to interfere with consecutive waves. Using a zoom view into
the most interesting regions, our volume renderer shows how the
waves break apart and change their direction. This happens at most
in the Los Angeles area and especially the Whittier-Narrows region
which can be located by the streets that are rendered on top.

We again render the X and Z velocity using the cartoon-like classi-
fication. The colors show all areas that still contain waves with high
amplitudes as well as all areas that contain waves with low ampli-
tudes. The basin rendering furthermore highlights the colors of the
basins such that the visualization can show if such high-amplitude
waves are only in the basins (this is the case if all darkened areas
do not have red or dark-blue colors).

6 Demo Program

The demo program needs support for multi texturing, 3D textures,
and ARB vertex and fragment shaders. Otherwise, the program will
fail or render wrong pictures.

You can open a volume by clicking File - Open Volume. Similarily,
a masking texture can be opened by File - Open Mask Volume.
The meta files can be opened by File - Open Meta Streets (streets
and border,*.asc files or by File - Open Meta File (texture). The
meta information can be rendered transparent which is steered by
the parameter window (VolumeSlicer - meta information - color -
fourth component).

Every classification (volume and mask) can be adjusted by the ap-
propriate tab in the classification window. The mask texture only
reads the a-component (r, g, b are unused). Click on update to make
the changes current or click the ”always” check box to immediatly
see the changes.

The path to the volume files as well as their name schemes can be
set in the parameter window. The masking shader can be switched
off by a check box in order to use the ”normal” volume shader
again. If no masking texture is loaded, the ”normal” volume shader
is used.

We used the fileTS21VelocityMesh VS R2 as masking texture.

The volume renderer is part of a big graphics library and the source
code cannot be distributed yet. Nevertheless, the source code of the
data converter is accompanied with the submission.

a)

b)

Figure 1:The seismogram at the positionx = 250,y = 160 [voxel] that is recorded
at the surface (z = 0). (a) shows the x,y, and z velocities while (b) shows the x ve-
locity (red) and its approximated derivative, the acceleration (green). Note how the
acceleration always swings around zero while the x velocity does not. We used such
seismograms to get an idea about the dataset and adjust the intervals that are to be
rendered.

Figure 2:We used this cartoon-like classification. The original data values between
[−0.1, ...,0.1] are mapped and all values that are outside of this interval are clamped to
−0.1 or−0.1, respectively.


