Superfine mapping of the earthquake surface ruptures in the forests with terrestrial LiDAR

18 Sep. 2013 VISES workshop@ERI

2008 Iwate-Miyagi Inland earthquake (M6.9)

Toda et al. (2010)

Large slipping rupture at the south

Triangulation result around the site

Combination of 2 thrust & 1 strike slip faults explains surface trace

Yoshimi et al. (2008) @ AGU

1 m shortening

Yoshimi et al. (2008) @ AGU

Large slip rupture

Large slip thrusting

LiDAR mapping in the forest

LiDAR Point Clouds (raw data)

Terrestrial LiDAR mapping

The LiDAR-derived ultra-high accuracy digital elevation models rendered overall topographic features associated with the ruptures

800 m

Maruyama, Toda, Yoshimi et al. (2009)

Terrestrial LiDAR mapping

The LiDAR-derived ultra-high accuracy digital elevation models rendered overall topographic features associated with the ruptures

800 m

Maruyama, Toda, Yoshimi et al. (2009)

Terrestrial LiDAR mapping

Vivid imaging helped by trees and grass

We get ultra-fine topography data, but, need more information to quantitatively understand deformation. *Terrestrial LiDAR obtains vegetation with high resolution as well. **2 Move Section** Output Point View Glassify Tools Flightling Move by: Halt of view depth -121600 NW SE . Northing (m) -121700 1 -121800 tilted trees 1800 1600 1700 surface warping 5m

Cypress tree tilting along the rupture

Photo by M.Yoshimi

Extraction of trees from point clouds

20

Tree direction vector from point clouds (J.E. Lalonde, et al (2006)) Scatter matrix (3x3) $S = \frac{1}{N} \sum \left(P_i - \overline{P} \right) \left(P_i - \overline{P} \right)$ e_2 = tree direction vector Tree point cloud eigenvectors eigenvalues Principal component analysis of scatter matrix for each tree to obtain direction vector Yoshimi et al. (2009) ESC

Tilted trees around surface rupture

- 1. Tilted trees are concentrated around rupture.
- 2. Tilt directions show mechanical pattern associated with surface deformation.

Tilt direction and angle distributions

Deformation can be recognized from single image taken after rupturing if combined with tilting

2011 Fukushima Hamadori Eq.

InSAR Image by GSI from ALOS 24

Maruyama et al. (2012) AFERC/GSJ news⁶

Surface rupture in the forest (Shionohira: Saido)

Yoshimi (2013) in prep.

Laser Scanning

Yoshimi (2013) in prep.

Raw point clouds

Point Clouds (30 million points)

Scan from 13 locations

Extracted ground surface

Tree tilt dist.

N=566

Tree tilting is not significant or concentrated around narrow area

- around the fault
- Normal fault

Yoshimi (2013) in prep.

Reverse fault

Normal fault

Conclusions

- Terrestrial LiDAR was deployed for surface rupture of the 2008 Iwate-Miyagi Inland earthquake & 2011 Fukushima Hamadori Eq. to obtain fine topography.
- Terrestrial LiDAR is powerful tool for restoring vivid image of surface faulting.
- Trees can be tiltmeters on the ground when combined with LiDAR, which provide important information for structure design against deformation.