Earth Science Lidar Topography Applications

Chris Crosby San Diego Supercomputer Center @ UCSD

Featuring work from colleagues: J Ramón Arrowsmith (ASU); David Phillips (UNAVCO); Mike Oskin (UC Davis), Kurt Frankel (GA Tech)

OpenTopography

- Landscape development a combination of many processes:
 - Tectonic
 - Hillslope
 - Fluvial
 - Biologic
 - Anthropogenic
- High-resolution representation of landscape is central to qualitative and quantitative study of process.
- Aerial photography traditional tool for geomorphic studies
- 2D representation
- Qualitative tool *Crosby, 2006*

- Digital topography provides 2.5D representation of landscape
- Widely avail. digital topography (digital elevation models -DEMs) are too coarse to provide representation of small geomorphic features / process.

• USGS 30 m DEM = best available national coverage

- Digital topography provides 2.5D representation of landscape
- Widely avail. digital topography (digital elevation models -DEMs) are too coarse to provide representation of small geomorphic features / process.

• USGS 10 m DEM

- LiDAR / ALSM data
- DEMs at resolutions not previously possible.
 - sub-meter resolution
 - Measure features at the appropriate scale
- Applicable to:
 - Geomorphology
 - Landslide & flood hazards
 - Forestry/Ecology
 - Civil Engineering
 - Urban planning
 - Volcanology
- One of the hottest tools in the Geosciences

3D visualization: DEM + air photo fusion

Airborne Lidar 101

lidar = light detection and ranging (*aka* airborne laser swath mapping)

- 10⁶ to 10⁹ measurements of ground, vegetation, structures
 Point cloud (x,y,z coordinates) = fundamental lidar data product
- Earth's surface > 8 times per meter²

Airborne Laser Swath Mapping (ALSM)

Crosby, 2010

Airborne Lidar Workflow

3. Classify (filter)

LiDAR "point cloud"

x, y, z + attributes

•

• Filtering algorithms allow classification by return type:

- Ground, vegetation, building ...

Comparisons of Techniques for measuring surfaces and detecting changes in surfaces*

	GPS	InSAR	ALSM	TLS
Sample Density	1 site/10 km ²	10,000 pixels/ km ²	1->14 hits/ m ²	1000 hits/ m ²
Position Precision	1-20 mm	2-3 m	5-15 cm	0.6-5 cm
Change Detection	1 mm	1-2 cm	10 cm	1 cm
Scale	Global	100 km	10-100 Km	1 km

* Ball park numbers for typical applications

-Phillips, Meertens, and Jackson, UNAVCO

•Open Topography

Mapping fault traces: Denali 2002 earthquake rupture N

Google

Image © 2009 TerraMetrics

63°04'18.18" N 144°13'26.71" W elev 0 m

Post earthquake laser scanning and repetition (B4, Hector Mine, Denali)

Post El Mayor-Cucupah EQ Scan

RTMENT OF GEOLOGY

CICES

 Oskin, Arrowsmith, Hinojosa, Fletcher (NSF Rapid + SCEC); collected by NCALM

Fault slip rate (mm/yr) Main shock and ~12 hours seismicity/aftershocks Baja California

Change Detection with LiDAR Data

430

860 Meters

215

Arrowsmith, Oskin, Fletcher, Hudnut, in submitted

2000

Red Wall Canyon Offset

• total displacement = 297 ± 9 meters

Frankel et al., 2007, JGR - Solid Earth

Objective Mapping with Roughness

surficial geologic map

• bare-earth DEM (1 m)

Frankel and Dolan, 2007, JGR - Earth Surface

surface roughness map

Elevation change at Mt St Helens, September 2003 to October 4-5, 2004

Ralph Haugerud (USGS), David Harding (NASA), Vivian Queija (USGS), Linda Mark (USGS)

http://vulcan.wr.usgs.gov/Volcanoes/MSH/Eruption04/LIDAR/framework.html

Measuring Landscape Characteristics at the Appropriate Scale

USGS NED 10 m per pixel DEM

meter-scale features

Questions & Comments:

ccrosby@sdsc.edu

@OpenTopography

Facebook.com/ **OpenTopography**

OpenTopography

High Resolution Topography Data and Tools www.opentopography.org 🚮

