Applications of SfM

Characterizing hand samples or outcrops

Left. James & Robson (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. *Journal of Geophysical Research* **Right.** Westoby *et al.* (2012). Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. *Geomorphology*

Fold

https://sketchfab.com/models/ a90062db8a1a4fe1bcbb53c91acfc821

Paleoseismic trenching

Bemis *et al.* (2014). Ground-based and UAV-Based photogrammetry: A multi-scale, high resolution mapping tool for structural geology and paleoseismology. *Journal of Structural Geology*

Extracting Fold Form for Scientific Investigations and Education

Max Needle and Juliet Crider

Granite Dells Arizona Fracture systems and Precariously Balanced Rocks

Structure from Motion

Landers surface rupture

Johnson, K., Nissen, E., Saripalli, S., Arrowsmith, J R., McGarey, P., Scharer, K., Williams, P., Blisniuk, K., Rapid mapping of ultra-fine fault zone topography with Structure from Motion, *Geosphere*, v. 10; no. 5; p. 1-18; doi:10.1130/GES01017.1, 2014.

Ground-based structure from motion of Landers fault scarp knickpoint in 2016

Landslide mapping

Home Hill landslide, Tasmania, surveyed with oktocopter in July and November 2011.

Lucieer *et al.* (2013). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography, *Progress in Physical Geography*

Landslide mapping

Lucieer *et al.* (2013). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography, *Progress in Physical Geography*

Sinabung Indonesia

-simple ground based sfm and differencing for volcano study

ce (me

The emplacement of the active lava flow at Sinabung Volcano, Sumatra, Indonesia, documented by structure-frommotion photogrammetry -Carr, et al., in review. Pre-eruption 5 m **DEM** and post eruption SfM registered to unchanged areas

SfM from Video

See also: prompt 3D mapping of the earthquake-triggered lansdlide in Minami-Aso, Kumamoto, Japan

http://geomorphoto.blogspot.de/2016/04/prompt-3d-mapping-ofearthquake.html

Grab 150 frames from the video (equally spaced in frame number)

See this blog entry: http://activetectonics.blogspot.com/2017/10/ structure-from-motion-using-video-from.html I ran the files through the Agisoft Photoscan sequence of alignment (high), build dense cloud (medium), build mesh (medium), and build texture (medium).

Edit the resulting textured mesh in Agisoft Photoscan

SfM from Gazing Satellite Video

See also this blog entry:

http://activetectonics.blogspot.com/2017/10/structure-from-motion-using-video.html

Higher resolution and video

ALL IN THE FAMILY – PLANET TO LAUNCH SKYSATS AND DOVES ON MINOTAUR-C

Mike Safyan | September 26, 2017

Planet Team (2017). Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. https://api.planet.com.

SkySat-1 Video of Mount Ontake on October 16, 2014

Planet Team (2017). Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. https://api.planet.com.

Skybox Imaging HD Video of Mining Activity in Uşak, Western Turkey

Grab 100 frames from the video

Photoscan views from the side and the top of the mine

Planet Team (2017). Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. https://api.planet.com.

Textured mesh of the mine

Planet Team (2017). Planet Application Program Interface: In Space or Life on Earth. San Francisco, CA. https://api.planet.com.

Planet Team (2017). Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. https://api.planet.com.

Gazing at the Solar System: Capturing the Evolution of Dunes, Faults, Volcanoes, and Ice from Space

Report of the Keck Institute for Space Studies Workshop June 16 – 20, 2014 California Institute of Technology

> Study Leads: Andrea Donnellan, Jet Propulsion Laboratory Bernard Hallet, University of Washington Sebastien Leprince, Caltech

> > Keck

Figure 1. A gazing instrument would stare at and track targets from a range of vantage points during a single pass. For certain orbits solar illumination would vary between passes.

© 2015 California Institute of Technology. Government Support Acknowledged

Idea of gazing has been proposed

AD+Census, Small Adaptive Support Regions + Total Variation (Huber) regularization

Figure 19. DSM extracted using 21 images (1 master and 20 slaves) from a Skybox sequence acquired above Las Vegas Extraction using semi-global matching and Total Variations (TV) regularization and median DSM stacking, courtesy of P. d'Angelo, DLR.

-Keck report, 2014

SfM from Unmanned Aerial Systems (UAS)

El Mayor Cucupah earthquake rupture laser scan

LORATION

UCDAVIS DEPARTMENT OF GEOLOGY CICESE

SfM exercise

Build your own model using your own photographs of a target on campus. Make sure you have a way of transferring your photos onto the computer!

