Point Cloud to Raster LAStools to ArcGIS

J Ramón Arrowsmith School of Earth and Space Exploration Arizona State University

Christopher J. Crosby UNAVCO

Tutorial notes

Applications of High Resolution Topography to Geologic Hazards in Utah September, 2017, Salt Lake City, Utah

Find Topography Data

Instructions

State of Utah Acquired Lidar Data - Wasatch Front

1a. Select area of data to download or process 🕚

3A. DEM Generation (Streaming TIN) ①

Gridding Method

Calculate TIN

Unselect

1. Coordinates & Classification

Horizontal Coordinates: UTM Zone 12N, NAD83 (2011) [EPSG: 26912] Vertical Coordinates: NAVD88 (GEOID12A) [EPSG: 5703]

For now, don't select anything else

These options archive access	allow users to describe an ed via myOpenTopo (avail	id keep track of their jobs. Information entered below is able only to registered OpenTopography users).
Job title (up to	100 characters)	UGS Pearsons Canyon demo
Job descriptio	on (up to 500 characters)	Job description
Enter your e-r for notification u processing	nail address Ipon completion of	ramon.arrowsmith@asu.edu

HOME ABOUT V DATA V TOOLS V LEARN V COMMUNITY V

Point Cloud Job Report

Modify and resubmit this job Full job metadata report Download Job Metadata View Job Configuration **Q**

Job Id	Dataset	Title	Submission	Completion	Duration	Num points	Final Status
pc1505615743550	UGS_Wasatch	UGS Pearsons Canyon demo	2017-09-16 19:35:44	2017-09-16 19:36:04	20 secs	14,014,140	Done 🗸

Download Job Results

 Point Cloud Results
 Download point cloud data in LAZ formation points.laz (63.3 MB)
 Rename it so you can remember

 Share These Job Results

LAStools

- Open source and commercial tools for processing and analyzing lidar point cloud data in LAS/LAZ format
- https://rapidlasso.com/lastools/
- Native GUI, command line, ArcGIS, QGIS & ERDAS Imagine toolboxes.

Products LAStools BLAST LASzip PulseWaves Blog Events Support Contact
LAStools
Our flagship product is the LAStools software suite, which is an easy download (28 MB) and is available for licensing (see pricing). It is a collection of highly efficient, batch-scriptable, multicore command line tools. We have tools to classify, tile, convert, filter, raster, triangulate, contour, clip, and polygonize LiDAR data (to name just a few functions). All of the tools can also be run via a native GUI and are available as a LiDAR processing toolboxes for ArcGIS versions 9.3, 10.0, 10.1, 10.2, or 10.3, for QGIS versions 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, or 2.10, and for ERDAS IMAGINE versions 14.0 and 15.1.
LAStools are the fastest and most memory efficient solution for batch-scripted multi-core LiDAR processing and can turn billions of LiDAR points into useful products at blazing speeds and with low memory requirements. For seamless processing of large amounts of LiDAR we further offer the BLAST extension of LAStools.
Share this:

📰 lasview - just a little LAS viewer

PearsonDemopoints.laz		selected file only process all files verbose render only + color by +
browse	RUN .	window size +
V.	lasview - i "C:\Users\ramon\Google Drive\+S_Active_Items\2017UGS_OT\PearsonDemopoints.laz"	VIEW
\BorahPeak	START	sample points: 5000000
LAStools		apply file source ID
\Papers	CANCEL	concavity: 50
wildcard: *.laz add		
directory: E:\ go		README <q>UIT</q>
🔽 .las 🔽 .laz 🔽 .bin		
🗖 .asc 🔲 .bil 🔲 .dtm		
ASCII files +		
filter +		
transform +		
projection +		
overlays +		
LAS version: 1.2		
source ID: 0 created: 258/2017 1 AStools (c) by rapidlasso GmbH'		
'las2las (version 140403) + OT'		
# of points: 14014140		
point type: 3 point size: 34		

· 🗆 🗙

ASPRS LAS(er) Format

- Binary public format for exchange of 3D point cloud data. Owned & maintained by ASPRS.
- Airborne lidar-oriented. v. 1.0 (2003) v 1.4 (2011)

ASPRS Standard LIDAR Point Classes				
Classification Value (bits 0:4)	Meaning			
0	Created, never classified			
1	Unclassified ¹			
2	Ground			
3	Low Vegetation			
4	Medium Vegetation			
5	High Vegetation			
6	Building			
7	Low Point (noise)			
8	Model Key-point (mass point)			
9	Water			

 .LAZ = LASzip – open source library for lossless compression of LAS lidar data. Developed by Martin Isenburg of LAStools. THE

AGING & GEOSPA

Overview

Starting with an LAS/LAZ file, let's explore the contents of the file, do some manipulation and filtering, and then maybe reproject the file. Next we'll make elevation and other rasters using Lastools and visualize and examine them in Google Earth and ArcGIS.

Outline

- 1. LASinfo to see what's in the file (attributes etc)
- 2. LAS2txt to look at contents in human readable form
- 3. LASboundary to make an outline of the file and plot it on a map
- 4. LASground to classify ground vs vegetation points
- 5. LAS2LAS for filtering on attributes and reprojection
- 6. Lasgrid point density
- 7. Lecture burst on generating DEMs from points
- 8. Neighborhood approach for DSM and DTM (Lasgrid DEM)
- 9. Tinning approach with tiling for DSM and DRM (lastile and blast2dem)
- 10.ArcGIS DEM visualization, manipulation, and simple raster math

LASinfo – reports contents of LAS file

X Iasinfo - prints out a quick overview of the LiDAR content of a LAS/LAZ/BIN/ASCII file 1 job on 4 cores + PearsonDemopoints.laz selected file only process all files merge files into one 🗆 output ... "+⊧ verbose VIEW. sample points: 5000000 browse ... **RUN** ٠ lasinfo -i "C:\Users\ramon\Google Drive\+S_Active_Items\2017UGS_OT\PearsonDemopoints.laz" -otxt output option none \2017 OT short course C stderr START \BorahPeak C stdout. \LAStools COPY C * info.txt \OldTalks to build from CANCEL \Papers ⊙ *.txt. PearsonDemopoints.laz 🗖 no header report no VLRs report wildcard: *.laz add 🔲 no min/max report 🔲 outside bb report directory: E:V go. 🔲 do not parse points 🔽 .laz 🔽 .bin 🔽 .las -🔲 compute point density □.asc □.bil □.dtm progress + [ASCII files ... + P🗉 histogram + filter ... +repair counters repair bounding box +| transform ... file source id ++ projection ... +|creation date + overlays ... +🗉 system identifier LAS version: 1.2 Run button is down here + generating software 0 created: 258/2017 source ID: 'LAStools (c) by rapidlasso GmbH' + bounding box --collapse the upper choices 'las2las (version 140403) + OT' WARNING (may corrupt) # of points: 14014140 point type: 3 point size: 34 global encoding + 4000 00 44 470

LASinfo – reports contents of LAS file

PearsonDemopoints - Notepad File Edit Format View Help reporting all LAS header entries: file signature: 'LASF file source ID: 0 global encoding: 1 project ID GUID data 1-4: 0000000-0000-0000-5455-48410000000 version major.minor: 1.2 system identifier: 'LAStools (c) by rapidlasso GmbH' 'las2las (version 140403) + OT' generating software: file creation day/year: 258/2017 header size: 227 Header summary offset to point data: 1487 number var. length records: 3 point data format: 3 point data record length: 34 number of point records: 14014140 number of points by return: 13428282 578830 6177 846 5 scale factor x y z: 0.01 0.01 0.01 offset x y z: 000 414200.29 4580776.75 1355.91 min x y z: max x y z: 414794.80 4581560.78 1599.66 ariable length header record 1 of 3: reserved 43707 user ID 'LASF Projection' record ID 34735 Georeferencing information length after header 96 description 'GeoTIFF GeoKeyDirectoryTag' GeoKeyDirectoryTag version 1.1.0 number of keys 11 key 1024 tiff tag location 0 count 1 value offset 1 - GTModelTypeGeoKey: ModelTypeProjected key 1025 tiff tag location 0 count 1 value offset 1 - GTRasterTypeGeoKey: RasterPixelIsArea key 1026 tiff tag location 34737 count 31 value offset r 4 VEDT 41420029 41479480 key 2049 tiff tag location 34737 count 6 value offset 3 Y 458077675 458156078 key 2054 tiff tag location 0 count 1 value offset 9102 135591 159966 Ζ intensity 0 255 key 3072 tiff tag location 0 count 1 value offset 26912 return number 5 1 key 3076 tiff_tag_location 0 count 1 value_offset 9001 number of returns 1 5 key 4096 tiff_tag_location 0 count 1 value_offset 5703 edge of flight line 0 key 4097 tiff tag location 34737 count 14 value offset scan direction flag 0 key 4098 tiff tag location 0 count 1 value offset 5103 classification 1 7 scan angle rank 20 Summary of file contents --16 user data 0 0 point source ID 6165 12218 Min/max & histogram – gps time 67454341.779927 68227738.997013 Color R 7424 61440 G 8192 61696 from scan of file B 10752 59648 number of first returns: 13428282 number of intermediate returns: 7035 number of last returns: 13428388 number of single returns: 12849565 overview over number of returns of given pulse: 12849565 1145171 16008 3368 22 0 0 histogram of classification of points: 10625129 unclassified (1)

> 3388321 ground (2) 690 noise (7)

LAS2TXT – points in ascii

×

Ias2txt - turns LiDAR into human-readable, easy-to-parse ASCII

(\times) LAS2TXT – points in ascii (y) 4 (Z) 🔽 (i)ntensity 414248.13,4580776.87,1363.64,134,1,1,1,5,0,6165,67454341.779927,22528,23 ()eturn number বি (n)umber of returns 414248.04,4580776.97,1363.51,148,1,1,1,5,0,6165,67454341.782320,23040,23 (c)lassification 🔽 scan (a)ngle 414246.79,4580776.96,1363.12,192,1,1,1,5,0,6165,67454341.800585,27904,28 (u)ser data 414247.00,4580777.40,1363.19,185,1,1,1,5,0,6165,67454341.800597,29184,25 GPS (t)ime 414246.90,4580777.54,1363.31,162,1,1,1,5,0,6165,67454341.803013,29440,29 414246.68,4580777.08,1363.20,170,1,1,1,5,0,6165,67454341.803025,31488,32 (0) Verlap flag scanner channe(l) 414245.40,4580776.88,1363.18,199,1,1,1,5,0,6165,67454341.821231,29696,29 (RGB) color (w)ave packet index 414245.62,4580777.35,1363.11,221,1,1,2,5,0,6165,67454341.821243,33024,33 (W) ave packet 414245.84,4580777.80,1363.14,230,1,1,2,5,0,6165,67454341.821255,31488,31 wa(V)e form +attributes ... 414246.05,4580778.24,1363.22,205,1,1,1,5,0,6165,67454341.821266,33792,32 parse string: xyzirncaupt 414245.98,4580778.42,1363.16,233,1,1,2,5,0,6165,67454341.823683,35072,34 separator: comma 414245.74,4580777.94,1363.15,236,1,1,1,5,0,6165,67454341.823695,31488,30720,25088 414245.51,4580777.45,1363.18,231,1,1,5,0,6165,67454341.823707,32512,32512,26624 414245.27,4580776.96,1363.20,206,1,1,1,5,0,6165,67454341.823718,28416,28160,22272 414244.14,4580777.17,1363.16,235,1,1,1,5,0,6165,67454341.841924,26624,24576,23040 414244.36,4580777.63,1363.17,202,1,1,2,5,0,6165,67454341.841936,27904,26368,23296 414244.58,4580778.09,1363.19,236,1,1,1,5,0,6165,67454341.841948,28672,27392,23040 414244.80,4580778.53,1363.25,213,1,1,5,0,6165,67454341.841960,28928,27648,23040 414245.01,4580778.98,1363.24,236,1,1,1,5,0,6165,67454341.841971,29440,27648,23296 414245.23,4580779.44,1363.22,237,1,1,1,5,0,6165,67454341.841983,29184,27648,23552 414244.97,4580779.17,1363.20,237,1,1,1,5,0,6165,67454341.844376,28672,27136,22784 414244.73,4580778.69,1363.22,215,1,1,1,5,0,6165,67454341.844388,29184,27648,23296

LASboundary – generate outline of point data

LAS2LAS – filtering, clipping, coordinate transformation

Lecture burst: Point cloud classification

Lidar ground classification

...simplified...

Three assumptions:

- 1. Ground is smooth
 - Assumption: high curvature is not a point on the ground
- 2. Ground is continuous (single-valued)
- 3. Ground is lowest surface in vicinity

Start with mixed ground and canopy returns (e.g. last-return data), build TIN

Flag points that define spikes (strong convexities)

Rebuild TIN

Flag points that define spikes (strong convexities)

Rebuild TIN

R. Hagerud, USGS

A

Flag points that define spikes (strong convexities)

Rebuild TIN

Despike algorithm

Benefits:

- It works
- It's automatic
 - Cheap
 - All assumptions explicit
- It can preserve breaklines
- It appears to retain more ground points than other algorithms

Despike algorithm

Cross-section of highway cut

Problems:

- Removes some corners
- Sensitive to negative blunders
- Computationally intensive
- Makes rough surfaces
 - Real? Measurement error? Misclassified vegetation?

Point cloud classification

- LAStools LASground
- Other software:
 - Terrascan
 - QT Modeler
 - ENVI lidar
 - Global Mapper
 - MCClidar
 - CANUPO (CloudCompare)
- Still an area of active research
- Based on algorithm in Axellson (2000)*, with some modifications

Modified from T. Goulden, NEON

LASground – identify bare-earth (ground) points

I lasground - extracts the bare-earth f	rom LiDAR by classifying all	ground points	100 P	-	
PearsonDemopoints_unclass	Input: Uno point clou	classified d file			1 job on 8 cores + ○ selected file only ○ process all files merge files into one output - dir: C:\OTO appendix:
PearsonDemopoints_uncl PearsonDemopoints_uncl PearsonDemopoints_uncl PearsonDemopoints_work \testing wildcard: *.laz add directory: C:\ go ✓ .las .laz .asc .bil .dtm _ASCII files +			Ground classification settings: Output filename, landcover type, processing level		VIEW sample points: 5000000 no bulge no stddev in horizontal feet in vertical feet by flightline wilderness nature town or flats city or warehouses metropolis custom
Image:		Clip input pick lower l disable lower l	left x: 0 upper right x: 0 left y: 0 upper right y: 0	use squa tile size; 1	c settings + c default c fine e extra c ultra c ignore points + c compute height replace z output: laz → RUN re tile

selected file: C:\OTdata\17Utah\PearsonDemopoints_unclass.laz

LASground – identify bare-earth (ground) points

Reclassified point cloud

X 4	1420029	41479480	
Y 45	8077675 4	58156078	
Z	135591	159966	
intensity	0	255	
return_number	1	5	
number_of_retu	ırns 1	5	
edge_of_flight	_line 0	0	
scan_direction	ı_flag 0	1	
classificatior	ı 1	7	
<pre>scan_angle_rar</pre>	ık -16	20	
user_data	0	0	
<pre>point_source_I</pre>	D 6165	12218	
gps_time 67454	341.779927	68227738.9	97013
Color R 7424 6	51440		
G 8192 6	1696		
B 10752	59648		

Original point cloud classification

pan

number of last retur	ns: 13428388						
number of single ret	urns: 12849565						
overview over number	of returns of given pulse	: 12849565	1145177	16008	3368	22	0
biscogram of classif	ication of points:						
10625129 un	classified (1)						
3388321 gr	ound (2)						
690 no	ise (7)						

x í	41420027	41479482	
Y	458077673	458156080	
Z	135590	159964	
intensity	0	0	
return_numbe	er 1	5	
number_of_re	eturns 1	5	
edge_of_flig	ht_line 0	0	
scan_directi	on_flag 0	1	
classificati	on 1	2	
scan_angle_r	ank -16	20	
user_data	0	0	
point_source	2_ID 0	0	
gps_time 0.0	00000 0.00	00000	
Color R 7424	61440		
G 8192	61696		
в 1075	52 59648		

warning: After point cloud (re)classification

number of last returns: 13428388 number of single returns: 12649565 overview over number of returns of given pulse: 12849565 1145177 16008 3368 histogram of classification of points: 5315758 unclassified (1) 8698382 ground (2)

point density

Isgrid - rasters huge LiDAR collections into elevation/intensity/density/... grids Х _ I job on 4 cores +| PearsonDemopoints.laz C selected file only process all files merge files into one + | 🗉 output ... ☐ verbose VIEW sample points: 5000000 browse ... RUN ٠ ١. 1m² pixel/step size: 1 ١., lasgrid - i "C:\Users\ramon\Google Drive\+S_Active_Items\2017UGS_OT\PearsonDemopoints.laz" - point_density - otif item point_density \2017 OT short course \BorahPeak op: lowest START \LAStools \OldTalks to build from COPY fill n pixels: 0 \Papers CANCEL color options +PearsonDemopoints.laz • subsample + wildcard: *.laz add + | Iarge rasters use bounding box directory: E:\ go use tile bounding box 🔽 .laz 🛛 🔽 .bin 🔽 .las 🔲 specify size of raster ncols: 512 . 🔲 .bil 📃 .dtm 🔲 .asc nrows: 512 + ASCII files ... specify lower left +filter ... IIX: +transform ... +projection ... format: tif + overlays ... **RUN** LAS version: 1.2 0 created: 258/2017 source ID: README <Q>UIT 'LAStools (c) by rapidlasso GmbH' 'las2las (version 140403) + OT' # of points: 14014140 point type: 3 point size: 34

point density

Load .tif into ArcMap, change color map, use 3D Analyst to profile density

Slash of no data is telling us that we have exceeded the license limit

Digital Elevation Models

- Digital representation of topography / terrain
 - "Raster" format a grid of squares or "pixels"
 - Continuous surface where Z
 (elevation) is estimated on a
 regular X,Y grid
 - "2.5D"

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	0
0	50	100	100	100	100	100	100	100	100	100	100	100	100	100	50	0
0	50	100	150	150	150	150	150	150	150	150	150	150	150	100	50	0
0	50	100	150	200	200	200	200	200	200	200	200	200	150	100	50	0
0	50	100	150	200	250	250	250	250	250	250	250	200	150	100	50	0
0	50	100	150	200	250	300	300	300	300	300	250	200	150	100	50	0
0	50	100	150	200	250	300	350	350	350	300	250	200	150	100	50	0
0	50	100	150	200	250	300	350	400	350	300	250	200	150	100	50	0
0	50	100	150	200	250	300	350	350	350	300	250	200	150	100	50	0
0	50	100	150	200	250	300	300	300	300	300	250	200	150	100	50	0
0	50	100	150	200	250	250	250	250	250	250	250	200	150	100	50	0
0	50	100	150	200	200	200	200	200	200	200	200	200	150	100	50	0
0	50	100	150	150	150	150	150	150	150	150	150	150	150	100	50	0
0	50	100	100	100	100	100	100	100	100	100	100	100	100	100	50	0
0	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Source: http://www.ncgia.ucsb.edu/giscc/extra/e001/e001.html

- Grid resolution is defined by the size in the horizontal dimension of the pixel
 - 1 meter DEM has pixels 1 m x 1m assigned a single elevation value.

- 1 meter grid
- LiDAR returns from
 EarthScope data
 collection
- Example from flat area with little or no vegetation so ground is sampled approx. 5+ times per square meter
- How do we best fit a continuous surface to these points?
- Ultimately wish to represent irregularly sampled data on a regularized grid.

Generating DEMs from LIDAR

Interpolation Methods

Inverse Distance Weighting (IDW)

Isenburg, et al., 2006

DEM Generation via TIN Streaming

store elevation rasters to temporary files (grouped by rows)

Isenburg, et al., 2006

Example Result

500,141,313 Points 11 GB (binary, xyz, doubles)

50,394 × 30,500 DEM 3 GB (binary, BIL, 16 bit, 20 ft)

on a household laptop with two harddisks
 in 67 minutes
 64 MB of main memory
 270 MB temporary disk space

Measure fault slip at the appropriate scale B4 LiDAR topography 0.25 m DEM

of the DEM. A common method for determining the cell size of a DEM has been defined by Hu (2003). The grid size of a DEM can be estimated by: Langridge, et al. 2014

$$s = \sqrt{rac{A}{n}}$$
 Sqrt(1m²/4)= 0.5 m/pix

where s is the estimated cell size (typically in m), n is the number of sample points and A is the area containing the sample points. The

(1)

Mean ~4 shots/sq. m

LASGRID is neighborhood approach for DEM computation

 \times

Isgrid - rasters huge LiDAR collections into elevation/intensity/density/... grids

PearsonDemopoints.laz	Digital surface model—all points	<pre> [1 job on 4 cores +] C selected file only C selected file only </pre>
browse		process an mes merge files into one output dir: appendix:DSN filename: VIEW VIEW
\LAStools \OldTalks to build from \Papers PearsonDemopoints.laz wildcard: *.laz add directory: E:\ go	<pre>lasgrid -i "C:\Users\ramon\Google Drive\ +S_Active_Items\2017UGS_OT \PearsonDemopoints.laz" -elevation -average - odix "_DSM" -otif</pre>	sample points: 5000000 pixel/step size: 1 item elevation op: average fill n pixels: 0
✓ .las ✓ .laz ✓ .bin □ .asc □ .bil □ .dtm □ ASCII files + > filter + > transform + > projection + >		□ subsample + □ large rasters + □ use bounding box □ use tile bounding box □ specify size of raster ncols: 512 nrows: 512
A point type: 3 point size: 34		specify lower left

LASGRID is neighborhood approach for DEM computation

 \times

Isgrid - rasters huge LiDAR collections into elevation/intensity/density/... grids

PearsonDemopoints.laz ● browse ● filter ● by coordinates: ● ● by classification or return:	Digital terrai	in model—ground points	1 job on 4 cores + selected file only process all files merge files into one output dir: appendix:DTM filename: VIEW
by various criteria:	lasgrid -i "C:\Users\r +S_Active_Items\203 \PearsonDemopoint 2 -elevation -average	amon\Google Drive\ 17UGS_OT s.laz" -keep_classification e -odix "_DTM" -otif	sample points: 5000000 pixel/step size: 1 item elevation • op: average • fill n pixels: 0 color options + subsample + large rasters + use bounding box use tile bounding box
transform + projection + overlays + LAS version: 1.2 source ID: 0 created: 258/2017 'LAStools (c) by rapidlasso GmbH' 'las2las (version 140403) + OT' # of points: 14014140 point type: 3 point size: 34 x: 414200.29 414794.8	Under filter, select – keep_classification and number or value 2; ADD		specify size of raster ncols: 512 nrows: 512 specify lower left lix: liy: format: tif

BLAST2DEM is TIN approach for DEM computation

_

Х

El blast2dem - rasters billions of LiDAR points via a streaming TIN to elevation, intensity. slope, or RGB grids

PearsonDemopoints.laz	Digital surface model—all points (13.4M)	 ☐ 1 job on 4 cores + □ ○ selected file only ○ process all files □ merge files into one □ output + □ □ verbose VIEW
browse		sample points: 5000000 step: 1 kill triangles > 100 item: elevation -
VoldTalks to build from VPapers PearsonDemopoints.laz wildcard: *.laz add directory: E:\ go ☑ .las ☑ .laz ☑ .bin	blast2dem -i "C:\Users\ramon\Google Drive\ +S_Active_Items\2017UGS_OT \PearsonDemopoints.laz" -elevation -odix "blastDSM" -otif	 actual values hillside shading gray ramp false colors set min max min: max: invert ramp:
□ .asc □ .bil □ .dtm □ ASCII files +		 use tile bounding box specify size of raster ncols: 512
filter + transform + projection + overlays + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - <t< td=""><td></td><td>nrows: 512 specify lower left lix: liy: format: tif RUN README <q>UIT</q></td></t<>		nrows: 512 specify lower left lix: liy: format: tif RUN README <q>UIT</q>

Looks good but what is that white slash? We exceeded the unlicensed limit for blast2dem of 5M points!

We need to tile the data – be sure to make a folder to capture the tiles

Now let's blast again

El blast2dem - rasters billions of LiDAR points via a streaming TIN to elevation, intensity. slope, or RGB grids

source ID: 0 created: 258/2017 'LAStools (c) by rapidlasso GmbH' 'lastile (170915) unlicensed' # of points: 254569 point type: 3 point size: 34

blast2dem -lof file_list.8852.txt -cores 3 elevation -odir "C:\Users\ramon\Google Drive\
+S_Active_Items\2017UGS_OT\250m_DSM" otif

3 jobs on 4 cores + selected file only process all files merge files into one ioutput
VIEW
sample points: 5000000
step: 1
kill triangles ~ 100
item elevation
C actual values
actual values hillside shading gray ramp false colors set min max
max: ju
use tile bounding box specify size of raster
ncols: 512
nrows: 512
🗖 specify lower left
lix:
lly:
format: tif 🗾 🗸
RUN
README <q>UIT</q>

Х

Mosaic the tiles (with their buffers) into a seamless DSM in ArcGIS

🔨 Mosaic To New Raster

Arctoolbox	Input Rasters	Mosaic To New Raster
 Data Management Tools Archiving Attachments Data Comparison Distributed Geodatabase Domains Feature Class Features Fields File Geodatabase 	C: \Users \ramon \Google Drive \+S_Active_Items \2017UGS_OT \250m_DSM\tile_4 C: \Users \ramon \Google Drive \+S_Active_Items \2017UGS_OT \250m_DSM\tile_4	Mosaics multiple raster datas Load all the tiles with a shift- select
 General Generalization Geodatabase Administration Geometric Network Graph Graph Indexes Joins LAS Dataset Layers and Table Views Package Projections and Transformations Raster Raster Raster Catalog Raster Catalog Raster Catalog Raster Dataset Copy Raster Create Random Raster Create Raster Dataset Download Rasters Mosaic Mosa	Output Location C:\Users\ramon\Google Drive\+S_Active_Items\2017UGS_OT\250m_DSM Raster Dataset Name with Extension 250m_DSM_mosaic.tif Spatial Reference for Raster (optional) Image: Pixel Type (optional) 32_BIT_FLOAT Cellsize (optional) Image: Number of Bands Image: Description of De	These do matter
	OK Cancel Environments << Hide Help	Tool Help

Visualize the seamless DSM in ArcGIS as a hillshade

Now let's blast again

III blast2dem - rasters billions of LiDAR points via a streaming TIN to elevation, intensity. slope, or RGB grids

Digital terrain model—ground points

blast2dem -lof file_list.3140.txt -cores 3 keep_classification 2 -elevation -odir "C:\Users \ramon\Google Drive\+S_Active_Items \2017UGS_OT\250m_DTMv2" -otif

Under filter, select –keep_classification and number or value 2; ADD

□ 3 jobs on 4 cores + □ ○ selected file only ● process all files
🗖 merge files into one
□ output + □
🗖 verbose
VIEW
sample points: 5000000
eton: 1
step. 1
kill triangles > 100
item: elevation 🚽
actual values
C gray ramp
C false colors
🔲 set min max
min: 0
max: 0
invert ramp:
Since the bounding box
ncols: 512
prove: 512
format tif
RUN
README <q>UII</q>

Х

Visualize the seamless DTM in ArcGIS as a hillshade

DEMs in ArcMap and ArcScene

Basic visualization and colorization

Point and profile measurements

Raster Math (difference and conditional)

Canopy 3D viewing in ArcScene

Raster math!

Raster Calculator

Map Algebra expression

e.g., Morphological sediment budgeting

OSEPH M. WHEATON Research Linking Fluvial Geomorphology & Ecohydraulics

http://www.joewheaton.org/

Simple Canopy Height Map

8 H K

🔨 Raster Calculator

Canopy higher than 1 m

Map Algebra expression Con: Perform Layers and variables else evaluat ◆ heightmodel_1m.tif input cells of ◆ 250m_DTM_mosaic_SHD.TIF input cells of ◆ 250m_DSM_mosaic_shd.tif Really power ◆ PearsonDemopointsblastDSM_shd.tif PearsonDemopointsblastDSM_shd.tif Con("heightmodel_1m.tif" >= 1, "heightmodel_1m.tif")	ms a conditional if/ ion on each of the f an input raster. erful!!!	7 8 4 5 1 2 0 1	9 / 5 * 3 - . +	=== != > >= < <= ()	& 	Conditiona Con Pick SetNull Math Abs Exp Even10		
laver Properties	× QUntitled - ArcMap							
General Source Key Metadata Extent Display Symbology	: 🗅 🖻 🖨 🖨 🐇	🛱 🔒 🗙 🕒	0 @ <	- 1:6,3	62			i 🗊 🛒 💽 🖸
Show: Stretch values along a color ramp	3 🖬					😑 🕅 🙆	AR KY	
Classified Stretched Discrete Color	^				: 9			
Color Value Label Labeling 43.75 High: 43.75	File Edit View E Table Of Contents	Bookmarks In म m_1m.tif .75	sert Sel	ection G	eoproce	ssing Cust	omize W	indows Help
Properties-> Symbology ->	🖂 🗖 beightmode	el 1m.tif			2%) 	Sie ?	10	
		_mosaic_SHD.TI	F	- Ary 4				() () () () () () () () () ()
Change the color ramp						1.04		
	. □ 250m_DSM_	_mosaic_shd.tif					1. 6	
	⊞ 250m_DSM_	mosaic.tif					19 N N	2
	⊞ □ PearsonDen	nopointsblastDS	M	6		10 S		

