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Presentation outline

e Introduction and measuring topography
e “Seeing” and working at the appropriate scale
* Applications

Main Application types

* Feature mapping at fine scale
e Landscape reconstruction (offsets)

o Surface process interactions with tectonic
processes

 Differencing of repeat surveys
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Example scientific motivations

How do geopatterns on the Earth’s surface arise and
what do they tell us about processes? LANDSCAPES

ON THE EDGE

How do landscapes influence and record climate anGEies: = a5
tectonics?

What are the transport laws that govern the evolutio
of the Earth’s surface?

How does the landscape record evidence of prior
earthquakes?

Air

Organisims

Coupled hydrogeomorphic-ecosystem response to
natural and anthropogenic change

Landscape and ecosystem dynamics

Volcano form and process
Changes in volume of domes, edifice, flows over time e



?Iobal anr?l ;igit%nallo 100 Getting the right coverage in
opogra a S- S . .
Pography/bathy ( time, space, and resolution for the

question
Local to site scale topography (dm to m / pix)
A Airborne LiDAR C  Structure from Motion
onboard GPS and IMU motion of camera =
constrain position and provides depth .-~~~ &
orientation of aircraft informatior?’,_/" O. | \f;;g\ =

| scene structure refers to

\ both camera positions

and orientations and
the topography

distance between scanner and
ground return determined from
delay between outgoing pulse
and reflected return

\ B Terrestrial LIDAR

", lines show track of scan across ground
circles show actual ground return footprints

Stereo-
Photogrammetric
Elevation Model (Polar
Geospatial Center)

Johnson, K., Nissen, E., Saripalli, S., Arrowsmith, J R., McGarey, P., Scharer, K., Williams,
P., Blisniuk, K., Rapid mapping of ultra-fine fault zone topography with Structure from
Motion, Geosphere, v. 10; no. 5; p. 1-18; doi:10.1130/GES01017.1, 2014.
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Science requirements
 Need topography data with sufficient spatial

extent and resolution to capture phenomena
of interest

 Need topography data with sufficient
temporal repeat to capture changes of
Interest
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430km of ground rupture, above 4000m

Yann Klinger, IPGP;
http://peer.berkeley.edu/events/2009/sfdc_workshop/Klinger Kunlun_EQ.pdf




Moment Magnitude (M)
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Length scales >10°m and <1 m

Surface Rupture Length (km)
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“Seeing” at the appropriate scale
means measuring at the right scale

Surface processes act to
change elevation through
erosion and deposition while
tectonic processes depress or
elevate the surface directly—
their record is best
characterized with the right fine
scale.

Applies in particular to statistical
self similarity

How long is the coast of Britain?

Statistical self-similarity and fractional dimensior
Science: 156, 1967, 636-638

B. B. Mandelbrot


http://en.wikipedia.org/wiki/How_Long_Is_the_Coast_of_Britain?_Statistical_Self-Similarity_and_Fractional_Dimension
http://en.wikipedia.org/wiki/How_Long_Is_the_Coast_of_Britain?_Statistical_Self-Similarity_and_Fractional_Dimension
http://en.wikipedia.org/wiki/How_Long_Is_the_Coast_of_Britain?_Statistical_Self-Similarity_and_Fractional_Dimension

Drainage > 100 sq. m

USGS 10 m/pix NED B4 lidar 0.5 m/pix

USGS 10 m/pix NED



UNAVCO Terrestrial Laser Scanner
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I - sufficient to characterize features
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Structure from Motion

e Solves for the scene structure using photographs from a moving camera

e
. ok
L%

* “Structure” = positions and orientations of camera + positions of targets 30-Model’, 2

¢ Can also solve for camera parameters like focal length, lens distortion

cccccc

Terrestrial Structure fro
LiDAR DEM Motion DEM
Haddad, et al., 2012 r s A i and Johnson, et al. 2014
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Main Application types

Feature mapping at fine scale
Landscape reconstruction (offsets)

Surface process interactions with tectonic
processes

Differencing of repeat surveys



Northern San Andreas Fault, California



7 e

8

U M b
8 #.-_—._. o X
of'
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D B --Ii_xplanation

— — =~ Wasatch fault mapping using lidar
i Solomon, in prep)

h fault mapping
(Personius and Scott, 1992)

Wasatch
Fault Zone

' Combine aerial

photographic and
topographic analysis
of Digital Elevation
Models and their
derivatives:

Increase detail and
confidence in feature

| delineation (fault
traces)

UGS Sept. 2017
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Proposed Road

Area of proposed USFS road reroute near Potters Ponds. Landslides on tree-covered slope above 4/4

proposed road are difficult to discern on 2011 aerial photograph (A), but are clearly evident on
1-meter contour map generated from high-resolution LiDAR (B).

. UGS Jan. 2015
Landslides too

https://geology.utah.gov/map-pub/survey-notes/lidar-tool-for-geologists/



Three views of the historically active City Creek landslides that lie between Capitol Boulevard and the City Creek Canyon 2/4
floor. (A) In the 1990s aerial photograph, the landslides are obscured by brush on the canyon wall, whereas in the new (B)

0.5-meter 2013-14 LiDAR slopeshade map the landslides and their geomorphology are clearly visible. (C) The newly
remapped landslides are shown in red on the 2009 aerial photograph.

UGS Jan. 2015

https://geology.utah.gov/map-pub/survey-notes/lidar-tool-for-geologists/

Landslides too



Going beyond pretty pictures: the
hillshades are very nice, but...
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Landslide inventory maps produced with
traditional methods — aerial photograph
interpretation, topographic map analysis,
and field inspection — are often subjective
and incomplete. Availability of high- 2 : % :
resolution topographic data invites new, Booth, A. M. Roering, J. J., Perron, J. T., Automated landslide mapping using spectral

analysis and high-resolution topographic data: Puget Sound lowlands, Washington,

automated landslide ma pp'ng prOCGdeeS and Portland Hills. Oreson. Geomorphology. 109 132—147. 2009.
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Characterizing arid region alluvial fan surface roughness with
airborne laser swath mapping digital topographic data

Kurt L. Frankel' and James F. Dolan' ~ JGR, 2007
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Morphologic dating of fault scarps using airborne laser swath

mapping (ALSM) data GRL, 2010
G. E. Hilley," S. DeLong,” C. Prentice,” K. Blisniuk,’ and JR. Arrowsmith*




Main Application types

Feature mapping at fine scale
Landscape reconstruction (offsets)

Surface process interactions with tectonic
processes

Differencing of repeat surveys
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Figure 2. Obligue view of Hector Mine earthquake surface rupture that experienced
3545 mof right-lateral displacement. The repture trace is pointed out by inger icons;
the Hght and dark bands below and above the surface uplure are subparallel, fopo-
graphic escarpments. Several offsel fdges are now juxtaposed with gullies, fonming
‘shutter” ridges. Raw laser hits are used (o illominate the ground surface in this point-
cloud image. From tens to hundreds of hits per square meter were collected along the
primary surface nipiures,

Bulletin of ihe Seismological Seciety of America, Vol. 92, No. 4, pp. 15T0-15T6, May 2002

High-Resolution Topography along Surface Rupture of the 16 October 1999
Hector Mine, California, Earthquake (M,, 7.1) from
Airborne Laser Swath Mapping
by K. W. Hudnut, A. Borsa, C. Glennie, and 1.-B. Minster
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Figure 6.  (a) Cross sections through the raw laser
data on either side of the surface rupture, along the
cast and west profiles shown in Figure 4, are shown
|ijL‘:l.:lL‘:d onto the faule planc (a grnuml-.lilurh: COFTEC-
lien has already been removed), (b) Comparison ol
the topographic profiles on either side of the Fault,
afer shifting the profiles shown in Figure 6a o re-
move our best estimate of the lateral and verical ofl-
sl along this 300-m section.



Hillshade
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Red profile with overlay of back-slipped blue profile
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Slip (m); QTM measurements
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Slip (m); field measurements Salisbury et al., 2012



20 |

18 |

16 |

14|

Offset (m)
|_\
o

o

; 20

18
| 16
14

12

[ 10
8

i 0 i EID ]
H | i d:\ 0 g b 6

0 !
DHDDD [.DE 4
NESLE

i
2
E ; £

0
40 50 60 70 80 90 100 110
Distance along fault (km)

Cumulative Offset
Probability Distribution

|"‘-"“||...-...I

01 02 03 04 05 0.6
COPD (Weighted by Quality Rating)



Offset (m)
ON &~ OO

Offset (m)
ODNP~OO

=
o

Salisbury et al., 2012

=
-

N
()

40 50 60 70 80 90
Distance Along Fault (km)

100



Main Application types

Feature mapping at fine scale
Landscape reconstruction (offsets)

Surface process interactions with tectonic
processes

Differencing of repeat surveys









Understanding geomorphic response to uplift

Uplift rate

-a00
-4500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 =500

Material moves along fault though relatively stationary uplift zone:
How does landscape respond?

What will the landscape tell us about the geometry of the uplift?
SI:ID I I L] 1 L] 1 1

Total rock uplift

-a00
-4500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 -300

-G. E. Hilley
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Arrowsmith, 1995; Hilley, 2001, Hilley and Arrowsmith, 2008
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Duvall, Kirby, and Burbank, 2004, JGR-ES

A. Equilibrium Profiles: Concavity Index
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Main Application types

Feature mapping at fine scale
Landscape reconstruction (offsets)

Surface process interactions with tectonic
processes

Differencing of repeat surveys
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Fault zone deformation and shallow slip from LiDAR differencing

Ed Nissen (Colorado School of Mines)
Tadashi Maruyama (AIST),

Ramon Arrowsmith, Sri Saripalli, Aravindhan
Krishnan (Arizona State University) |

- 1@ T with thanks to:
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& KOKUSAI KOGYO GROUP
Vertical displacements in the an NSF+USGS center

2011 Mw 6.6 Iwaki earthquake E Ni
-E. NISSen



The 2008 Iwate-Miyagi earthquake (Mw 6.9), Japan

Pre-earthquake DEM (2m)

-E. Nissen



The 2008 Iwate-Miyagi earthquake (Mw 6.9), Japan
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Post-earthquake DEM (1m)

-E. Nissen



14 June 2008 Iwate-Miyagi earthquake

2006-2008 vertical difference (m)

-E. Nissen



The 2008 Iwate-Miyagi earthquake (Mw 6.9), Japan
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Dense 3-D displacements in an area InSAR cannot image

The displacement sense and magnitude agrees with (limited) field observations
-E. Nissen



Summary

LIDAR provides dm to cm global accurate measure of the earth’s
surface

Meter scale (high resolution topography) is critical for measuring
and understanding volcanic, structural, & geomorphic processes

Main applications in volcano- and faulting-related investigations
can be separated into fault zone mapping, reconstructing offsets,
Investigating geomorphic responses to active deformation, and
differencing of repeat surveys

Looking ahead

Lots more data and problems out there!
4 dimensions: directly measuring the displacements

Processing and filtering enhancements: looking for the signal
In all the data (e.g., Hilley, et al., 2010; Delong, et al., 2010)

Bring these data and their depiction of the earth’s volcanic,
geomorphic, and tectonic processes to geoscience
education/public outreach
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