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Topographic metrics and bedrock channels
Outline of this lecture

Topographic metrics
Fluvial scaling and slope-area relationships
Channel steepness sensitivity to rock uplift
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Topographic Metrics

Many Topographic metrics have been proposed. We’'ll
examine the three most common

— Channel Steepness Index

— Hillslope Gradients

— Local Relief at Various Scales

— Chi (Bodo lecture)

What are the relationships among these?

Which are most useful for gaging the influence of tectonics on
topography?

--K. X Whipple
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80-90% Relief is on Bedrock Channels

--K. X Whipple
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Fluvial Scaling — Empirical Data

e Empirical data for well-adjusted fluvial systems around the
globe yield the following scaling:

S = kA

Elevation

|

Log S

Distance Log A (m?)

e Linear relationship between log(S) and log(A)

* K. Is the channel steepness; 0 is the concavity
--K. X Whipple



Flint’s Law: Mixed Bedrock-Alluvial Stream (Appalachians, VA)
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Flint’s Law: Mixed Bedrock-Alluvial Stream (Appalachians, VA)
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K, IS a general morphometric index:
No dependence on basin shape
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Duvall, Kirby, and Burbank, 2004, JGR-ES
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Siwalik Hills, Nepal -

Image @ 2005 MDA EarthSat
Image & 2005 DigitalGlobe
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Active folding of fluvial terraces across the Siwaliks Hills,
Himalayas of central Nepal

J. Lavé! and J. P. Avouac

Laboratoire de Géophysique, Commissariat a I'Energie Atomique, Bruyéres-Le-Chétel, France

I:l Breccia

I:] Upper Siwaliks

i:] Middle Siwaliks

[ ] Lower Siwaliks
- Bakeya Khola [ ] Pre-Tertiary sediments

¢ | Lesser Himalayan series
[ ] crystaline sheets

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. B3, PAGES 5735-5770, MARCH 10, 2000
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Bagmati Transect

Bakeya Transect
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--K. X Whipple

Siwalik Hills Anticline

Himalaya Foreland, Nepal
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Strike-Parallel: Normal, uniform concavity
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Steepness Index
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Tectonic Geomorphology of the San Gabriel Mountains hte://afaults.cr.usgs.gov
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http://qfaults.cr.usgs.gov/
http://earthquake.usgs.gov/anss/
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Hillslope Rehief
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Streams by Normalized Steepness Index

Local Relief (r = 2.5km)
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Tectonics from topography: Procedures, promise, and pitfalls

Cameron Wobus'
Kelin X. Whipple
Department of Earth, Atmospheric and Planstary Sciences, Massachusetts Institute of Technology,
Cambridge, Massachusefis 02139, US4
Eric Kirby
Department of Geoscienceas, The Pennsylvania State University, University Park, Pennsylvania 16802, US4
Noah Snyder
Department of Geology and Geophysics, Boston College, Chestnut Hill, Massachuseits 02467, US4
Joel Johnson
Katerina Spyropolou
Benjamin Croshy
Dgpartment of Earth, Atmospheric and Planstary Sciences, Massachusetts Institute of Technology,
Cambridge, Massachusefis 02139, US4
Daniel Sheehan
Information Systems, Massachusetis Institute of Technology, Cambridge, Massachusetits 02139, US4

ABSTRACT

Empirical observations from fluvial systems across the globe reveal a consistent
power-law scaling between channel slope and contributing drainage area. Theoretical
arguments for both detachment- and transport-limited erosion regimes suggest that
rock uplift rate should exert first-order control on this scaling. Here we describe in
detail a method for exploiting this relationship, in which topographic indices of lon-
gitudinal profile shape and character are derived from digital topegraphic data. The
stream profile data can then be used to delineate brealks in scaling that may be asso-
ciated with tectonic boundaries. The description of the method is followed by three
case studies from varied tectonic settings. The case studies illustrate the power of
stream profile analysis in delineating spatial patterns of, and in some cases, temporal
changes in, rock uplift rate. Owing to an incomplete understanding of river response
to rocl uplifi, the method remains primarily a qualitative tool for neotectonic invesii-
gations; we conclude with a discussion of research needs that must be met before we
can extract gquantitative information about tectonics directly from topography.
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geomorphtools.org

i Tectonic Geomorph.., GLG362/598--Geom.., About Underweoeod ...

’1‘-\,,

=>Home > Tools = Stream Profiler

9 Franklin & Marshall ..

Stream Profiler

¢ Tool Description
> This tool allows users to extract river profiles from DEM data and analvze

the steepness index and concavity of one or more channels. It operates
using ArcGIS 9 X or 10X and MATLARB r14 more recent (requiring
Matlab's Statistics Toolbox).

Tool Codes
ArcGIS 9. X _dl file and MATLARB codes here.

ArcGIS10.X dil files and MATLAB codes are here.

The old way. Now we
use TopoToolbox!

Installation instructions are below and are here.

(we are working on revisions for Arc10.1)

Do not unzip with built-in windows decompress. This corrupts the

DLL for some reason. WinRaR and 7zip are known to work fine.

Install directions are in install uninstall notes txt

Matlab Codes are unchanged from previous version

A few improvements (tutorial is still for the 9 X version):

= Append files on import works better — vou don’t get multiple

copies of the merged shapefile loading up in arcmap
Hot links to pop up the matlab output figures now work on
the merged shapefile, so vou can click any channel with the
lightning strike and view the channel profile and fits vou may
have done.




Journal of Structural Geology 44 (2012) 54—75

Contents lists available at SciVerse ScienceDirect

JOURNAL OF
STRUCTURAL
GEOLOGY

Journal of Structural Geology

journal homepage: www.elsevier.com/locate/jsg

Review
Expression of active tectonics in erosional landscapes
Eric Kirby®"*, Kelin X. Whipple €

*Department of Geosciences, Penn State University, University Park, PA 16803, USA
b Department of Earth and Environmental Sciences, University of Potsdam, Potsdam 14476, Germany
©School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
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Channel steepness considerations

“By evaluating slope-area regressions using a reference concavity
index (0,.), one can determine a normalized steepness index
(k) that allows effective comparison of profiles of streams with
greatly varying drainage area” (Wobus, et al., 2006)

—0
S — ksnA ref
Stream-power family of incision models
E = KA™S"
(E is erosion rate, K is a generalized rate constant, A is drainage
area, and S is local slope)

Kirby and Whipple, 2012
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Channel steepness considerations

At steady state, by definition the channel erosion rate is equal to
the uplift rate of rock (E = U), and the steady-state channel
gradient(S,) is Recall:

Se = (U/K)V/mp—m/n S = kgpA Vet

predicts 8~ %, consistent with observations for well-graded
channels with uniform Kand U (0.4 < < 0.6)

And thus we assume, K, ~ UP (rock uplift rate) all other things
(like climate, vegetation, and rock resistance to erosion, [that is
K], being roughly equal)

Kirby and Whipple, 2012
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Transient channel response and knickpoints
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Migrating boundaries between
downstream region adjusting to new
forcing (e.g., baselevel drop) and
upstream region adjusted to prior state
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Interpretation of transient profiles
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Saline Valley, California example
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