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Aligning point clouds and topographic change detection

e Multi-temporal topography
e Earthquake examples:
- scientific motivation
- aligning (registering) topography data with ICP
- 2008 Iwate earthquake (Japan)
- 2011 Fukushima earthquake (Japan)
- 2010 EI Mayor Cucapah earthquake (Mexico)

e Other applications



Aligning point clouds and topographic change detection

Known active faults

Known active faults
mapped with airborne LIiDAR
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e There is now a “baseline” of lidar topography on many active faults in the western US

 After an earthquake, repeatlidar data can be collected and differenced



Measuring fault slip - far field

—_—

Wei et al. (2011), Nat. Geosci.

Radar interferometry (InSAR)

* Precise (sub-centimetric) line-of-sight
displacements over wide areas
» Breaks down amongst dense vegetation

and steep deformation gradients (e.g. along

surface ruptures)

Pixel cross-correlation

e Horizontal displacements over wide areas

» Decorrelates in dense vegetation and with changes
in surface reflectance (e.g. agriculture, seasonal

change)
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Measuring fault slip - far field

Weietal. (2011), Nat. Geosci.
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Measuring fault slip - near field

e Time consuming and subject to measurement error and misinterpretation

e Typically shows high scatter - genuine slip heterogeneity or not?

Teranetal. §
(2015),
Geosphere

Fletcher et al.
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Shallow slip deficit

e The observation that in large, ground-rupturing earthquakes, slip at depths of 100s to

1000s of meters commonly exceeds surface offsets surveyed at the fault scarp

depth, km
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Fialko et al. (2005), Nature
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Dolan & Haravitch (2014), EPSL

Reflects:

 Genuine loss of slip made up during other
parts of the earthquake cycle (e.g. afterslip)?

e Redistribution of slip in near-surface onto
subsidiary small faults and fractures?

e artifacts that arise when InSAR data with
poor correlation near the surface rupture

are inverted for slip at depth?
Controlled by:

e Material properties?

e Fault structural maturity?

e Fault geometry?

e Earthquake magnitude?



Measuring fault slip - near field

Far-field Near-field

Differential lidar
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e 3-D displacements within narrow K A
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e Shallow slip and mechanical

behavior of the interior fault zone
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spans and in dense vegetation Teran et al. (2014), Geosphere

1 Weietal (2011), Nat. Geosci. Fletcher et al. (2014), Geosphere

e Remains coherent over long time-




3-D earthquake deformation from repeat lidar

Pre-earthquake LiDAR survey




3-D earthquake deformation from repeat lidar

Pre-earthquake point cloud




3-D earthquake deformation from repeat lidar




3-D earthquake deformation frag rgpeat lidar

Post-earthquake LiDAR survey




3-D earthquake deformation from repeat lidar

Post-earthquake point cloud




3-D earthquake deformation from repeat lidar

Pre-earthquake point cloud




3-D earthquake deformation from repeat lidar

Pre-earthquake point cloud Post-earthquake point cloud

The Challenges of LiDAR differencing

e Data are irregularly spaced (we can rasterize them, but lose information doing so)
e There can be large mismatches in point density (legacy datasets vs modern surveys)
e ...and mismatches in data quality and metrics (third party vs research-grade)

e Treatment of vegetation returns in forested areas



®
3-D earthquake deformation from repeat lidar

 The iterative closest point algorithm (ICP) is a method for registering (aligning) irregular
point clouds, well known in computer vision and medical imaging

 [CP minimizes closest point pair distances using iterative rigid-body transformations, each

one comprising a translation [ ¢, ¢, t,] and a rotation [a By ]

x vy Yz
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o=|"Y y
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ICP iterations = 1

White: Original point cloud
Red: ICP aligned point cloud

pointclouds.org/documentation/tutorials/interactive_icp.php


Presenter
Presentation Notes
αβγ


3-D earthquake deformation from repeat lidar

 The iterative closest point algorithm (ICP) is a method for registering (aligning) irregular
point clouds, well known in computer vision and medical imaging

 [CP minimizes closest point pair distances using iterative rigid-body transformations, each

one comprisinga translation [ ¢, ¢, ¢, | and a rotation [a By ]

III Split both datasets into square cells
FELSUEL . Goemswsmmsl. W nE shiaee cwssn] T T mmsa T
: Pre-event DTM ) _E Post-event DTM ; =

||||||||
|||||

¢ (1) the two LiDAR datasets are first split il

into square “cells”

e (2) ICP is run on each equivalent pair of cells.
The translation [ £, ¢, t, | corresponds

to the cell displacement

e (3) this is repeated for the next pair of cells

Nissen et al. (2012), Geophys. Res. Lett.



Iterative Closest Point algorithm (ICP)

Pre-earthquake cell Post-earthquake cell




Iterative Closest Point algorithm (ICP)

Pre-earthquake cell Post-earthquake cell




Iterative Closest Point algorithm (ICP)

Pre-earthquake cell Post-earthquake cell

Find closest points



Iterative Closest Point algorithm (ICP)




Iterative Closest Point algorithm (ICP)
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Find closest points



Iterative Closest Point algorithm (ICP)
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Transform point cloud



Iterative Closest Point algorithm (ICP)
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Find closest points



Iterative Closest Point algorithm (ICP)
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Transform point cloud



Iterative Closest Point algorithm (ICP)
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Find closest points



Iterative Closest Point algorithm (ICP)
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Transform point cloud



Iterative Closest Point algorithm (ICP)

/\/\,\/\

Find closest points



Iterative Closest Point algorithm (ICP)

/\/\,\/\

Transform point cloud



Iterative Closest Point algorithm (ICP)

earthquake
displacement



3-D earthquake deformation from repeat LiDAR point clouds

El Split both datasets into square cells

i Pre-event DTM ; :

: :Ppsr-evenfDTM sy
Caveats

e [CP will not work if there are e

large changes to the shape of the
|Z| Take two equivalent cells and align with ICP

cell, e.g. through landsliding

Post-event (“target”) DTM cell _ Aligned
DTM cells

o [CP will generate spurious results

in areas that are very planar

1y Bt y
Pre-event (“source”) DTM cell o=V 1-a t J} X
= ¥ y ’
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Nissen et al. (2 01 2), G@OphyS. Res. Lett. [3] Move on to next pair of cells and repeat step 2



14 ]une 2008 lwate-Mlyagl earthquake
d North:;stern Honshu | *‘ | l14June 2008 IwateMlyagl earthquake

50 km

w

N

—

Elevation (km)

Xx 13.06.2008 ruptures |

(where observed) | Nissen et al.
----- other active faults ||

vefaults_J1 (2014), EPSL
e First ever partial earthquake rupture with pre-eventlidar coverage

o

=

e Pre- and post-event lidar flown by commercial surveying firms

e InSAR and pixel tracking limited by dense vegetation and steep phase gradients



14 June 2008 Iwate-Miyagi earthquake

Photos: Tadashi Maruyama
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14 June 2008 Iwate-Miyagi earthquake

2006 pre-earthquake bare Earth DTM (2m) & KOKUSAI KOGYO GROUP



14 June 2008 Iwate-Miyagi earthquake
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14 June 2008 Iwate-Miyagi earthquake

2006-2008 DoD (m)




14 June 2008 Iwate-Miyagi earthquake

2006 pre-earthquake DEM (2m)



14 June 2008 Iwate-Miyagi earthquake
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14 June 2008 Iwate-Miyagi earthquake

landslide




14 June 2008 Iwate-Miyagi earthquake
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11 April 2011 Fukushima-Hamadori earthquake
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11 April 2011 Fukushima-Hamadori earthquake
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11 April 2011 Fukushima-Hamadori earthquake
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11 April 2011 Fukushima-Hamadori earthquake

o Y R T —— e - ——— -
L S TR Rl T R e . s
" "

| 11 April 2011 Fukushima-Hamadori earthquake i'é:

o> Tohoku coseismic |}
GPS displacements

. ---11.04.2011 ruptures
|- other active faults

R oA & b I g
b 5

=y Wil

p——

1 140°50'
%

2011 post-event 1 m DEM /N\sossa cogrorarion



11 April 2011 Fukushima-Hamadori earth

Photos from Toda & Tsutsumi (2013), BSSA
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e Slip at depths of a few hundred meters

appears to vary smoothly

e In many places, only a small proportion of the

slip makes it to the surface
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Darfield rupture (Quigley et al. 2010)

vertical slip (m)

[zmit rupture (Rockwell et al. 2002)

'd] Vertical offset measured at fault scarp
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e Slip at depths of a few hundred meters
appears to vary smoothly

e In many places, only a small proportion of the
slip makes it to the surface

e Reflects off-fault deformation in the shallow
subsurface?



earthquake

S NE
S%b “.é(. e
S e
ciss Q S
il:‘ o . : gl‘.'
A N
AL A
13 A o
3 sl
el
o ‘q‘ g
- \\\: ‘..‘-..
Rl
8 '
£
==
=
Re]
e
]
>
{ @
L . .
Gulf of California
)
114

e First complete earthquake rupture with pre-event LiDAR coverage
e Regional lidar flown by INEGI in 2006 at high elevation (6 km AGL) with 0.01 pts/m?
e Post-event lidar flown by NCALM along a 3 x 100 km strip in August 2010, with ~9 pts/m?



4 April 2010 El-Mayor-Cucapah earthquake

Weietal (2011), Nat. Geosci.
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e Geodetic and seismological modelling

supports steep dips of 60° - 90°

Weietal (2011), Nat. Geosci.
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4 April 2010 El-Mayor-Cucapah earthquake

Luna Salada |

Pescadores

,@*"%ﬁ LAGUNA SALADA BASIN

e Geodetic and seismological modelling

supports steep dips of 60° - 90°
e Field observations support a much wider
range of dips and imply slip on low-angle

detachment faults with dips of ca. 20°



4 April 2010 El-Mayor-Cucapah earthquake

. Paso Superior Paso Inferlor Borr. Puerta _ _ Pescadores Luna Salada |

LAGUNAISALADA

For high-angle slip,
vertical motions
dominate over
fault-
perpendicular
motions

For low-angle slip,
fault-perpendicular
motions dominate
over vertical
motions
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Geophysical Research Letters

Optimization of legacy lidar data sets for measuring
near-field earthquake displacements

Craig L. Glennie', Alejandro Hinojosa-Corona®, Edwin Nissen®, Arpan Kusari', Michael E. Oskin®,
J. Ramon Arrowsmith>, and Adrian Borsa®
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2006-2010 vertical displacement

2006-2010 y-axis rotations North

’N/z

L v

2006-2010 z-axis rotations
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Lidar instrument errors correlate with
pre-event flight lines (see Glennie et al.,

2014, Geophys. Res. Lett.)



2006-2010 N-S displacements







2006-2010 vertical displacements .

For high-angle slip, For low-angle slip,

vertical motions fault-perpendicular
dominate over motions dominate
fault- over vertical
perpendicular motions

motions




Lidar differencing vs other methods

InSAR Sub-pixel correlation .. Differential ALS

T R
650000 660000 @

Temporal resolution? Good Good Limited, will get better
Temporal coherence? Limited Variable Good

Far-field deformation? Good Limited Poor

Near-field deformation? Limited Good Good

Dense vegetation? Limited Poor Good

3-D displacements? Limited Good Good - with potential to

measure strain, rotations



Degradation of the 2010 El Mayor-Cucapah earthquake scarp

April, 2010

November, 2013

Austin Elliott, UC Davis/Oxford



Degradation of the 2010 El Mayor-Cucapah earthquake scarp
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Degradation of the 2010 El Mayor-Cucapah earthquake scarp
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Degradation of the 2010 El Mayor-Cucapah earthquake scarp
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Aligning point clouds and topographic change detection

2003 2004 2005 2006 2007

RTK dGPS surveys tied to
base stations occupying the
same known point.

Point clouds are in exactly the
same reference frame from
the start.
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Figmre 2. Detrended [EMs and Dol) for 2003 to 2007 Mote that the hillshades from the more moem year in the Dol are shown behind the
Dol for contesd. This figure is available in colour online al waw. intescence wibey comdoumaliespl

Wheaton et al. (2010), Accounting for uncertainty in DEMs from repeat topographic surveys:
improved sediment budgets, Earth Surface Processes and Landforms



Aligning point clouds and topographic change detection

Repeat SfM surveys
tied to ground control
points surveyed with
real-time kinematic

GPS (2-4 cm
accuracy). .
*
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Lucieer et al. (2015), Mapping landslide displacements using Structure from Motion (StM) arrd\lmage
correlation of multi-temporal UAV photography, Progress in Physical Geography



Aligning point clouds and topographic change detection
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e DEM of Difference (left) and horizontal displacement field from pixel cross-correlation (right)

e Caltech COSI-Corr package: Co-registration of optically-sensed images and correlation
http://www.tectonics.caltech.edu/slip_history/spot_coseis/index.html

Lucieer et al. (2015), Mapping landslide displacements using Structure from Motion (SfM) and image
correlation of multi-temporal UAV photography, Progress in Physical Geography
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August 24, 2014 South Napa Earthquake

Overview: =
The August 24, 2014, South Mapa earthquake (MG.0) produced significant damage resulting from ;@ FEm

shaking, fault rupture, fault afterslip, and ground deformation. Lidar data were collected to aid

specialized wark on the South Mapa earthquake including: (1) fault afterslip, especially in the Browns

“alley residential neighborhood; (2) shaking and carrelation to damage such as red- and yellow-tagged ‘ U

structures, especially in the downtown Napa area; (3) seismic hazards of the West Napa Fault System, science for a changing world

especially in residential areas; and (4) geospatial analysis and imagery support (such as post-
pracessing of lidar and other imagery that has already been acquired).

Airborne lidar data and imagery were collected an September 9, 2014 as part of multi-agencylinstitutional response to the August 24, 2014 South Napa Earthquake. Details
of the scientific response to this earthquake including the lidar acquisition can be found in Hudnut et al., 2014: L1SGS Special Open-File Report 2014-1249. Data were
collected and initially processed by Towill and are available both as raw files and products as initially delivered by the vendaor, as well as the USGS re-processed version of
re-classified point clouds and 0.25 meter DEM's from the USGS HDDS Explorer. Point clouds available from USGS and OpenTopography were reclassified (metadata) by
the US Geological Survey; this re-processing was funded by FEMA. Orthoimagery were collected by Towill on September 9, 2014, and by Google on August 24, 2014.

Flatfarm: Airborne LiDAR Survey Date: 09/09/2014 Survey Area: 78.00 k2 Paint Density: 22.56 pts.-'m:

Full Metadata Dataset Acknowledgement O Funders: CGS, DWR, FEMA, GEER, PEER, U3GS Collector. Towill

As high resolution topography data become increasingly ubiquitous, a
critical cyberinfrastructure challenge will be to provide processing and
analysis solutions that enable rapid extraction of information from
these datasets.
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2003 points white; colored by time: swath edges evident




Cloud to cloud difference (using CloudCompare software)

SB=Swath boundary

0.45 0.6 0.75 V=Vegetation change
C2C absolute distances (m) RZ=Rupture zone



Liquefaction impact on critical infrastructure in Christchurch, NZ (Bray, et al., 2012)
Pipeline responses to permanent ground deformation measured by differential
topography

i‘;«?‘ G

DO e D s e | 8
SRR ST TS
22 Feb. 2011 earthquake; B = (dv, — dv,)/I [angular distortion from vertical difference; | =5 m]

¢ Repairs — Pipelines I water ] Liquefaction Il Measured LIDAR Vertical Displacment

Repeat topography survey from Canterbury Earthquake Recovery Authority [CERA] (2012)
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