# Point clouds and DEMs

J Ramón Arrowsmith School of Earth and Space Exploration Arizona State University

Christopher J. Crosby UNAVCO

## Tutorial notes (April 2016)



**OpenTopography** High-Resolution Topography Data and Tools

# Point clouds and DEMs

- 1. Download tahoe.las
- 2. Open in CloudCompare
  - Increase point size, color by different scalar fields, select ground returns
  - Tools-Projection-Rasterize
- 3. Lasview (right click to change functions)
- 4. Lasinfo (lasinfo -i "C:\Users\ramon\Desktop\Tahoepoints.las" -odir "C:\Users\ramon\Desktop" -o "tahoe.txt")
- 5. Lasboundary (output file format kml)
- 6. Las2txt

### **Cloud Compare**



[06:14:28] [I/O] File 'C:/Users/ramon/Desktop/Tahoepoints.las' loaded successfully [06:14:28] [VBO] VBO(s) (re)initialized for cloud 'Tahoepoints - Cloud' (2.72 Mb = 100.00% of points could be loaded)

## ASPRS Standard LIDAR Point Classes

| <i>Classification Value (bits 0:4)</i> | Meaning                       |
|----------------------------------------|-------------------------------|
| 0                                      | Created, never classified     |
| 1                                      | Unclassified <sup>1</sup>     |
| 2                                      | Ground                        |
| 3                                      | Low Vegetation                |
| 4                                      | Medium Vegetation             |
| 5                                      | High Vegetation               |
| 6                                      | Building                      |
| 7                                      | Low Point (noise)             |
| 8                                      | Model Key-point (mass point)  |
| 9                                      | Water                         |
| 10                                     | Reserved for ASPRS Definition |
| 11                                     | Reserved for ASPRS Definition |
| 12                                     | Overlap Points <sup>2</sup>   |
| 13-31                                  | Reserved for ASPRS Definition |

http://www.asprs.org/a/society/committees/standards/asprs\_las\_format\_v12.pdf

#### CloudCompare v2.6.0 [64 bits] - [3D View 1]

File Edit Tools Display Plugins 3D Views Help



Use the scissor tool for segmentation



Ð

×









- 🗆 X











## Point clouds and DEMs

- 7. las2las
- Datum and projection
- http://geology.isu.edu/wapi/geostac/Field Exer cise/topomaps/ref datum.htm
- http://geology.isu.edu/wapi/geostac/Field Exer cise/topomaps/utm.htm
- http://geology.isu.edu/wapi/geostac/Field Exer cise/topomaps/state\_plane.htm







GeoKeyDirectoryTag version 1.1.0 number of keys 4

key 1024 tiff\_tag\_location 0 count 1 value\_offset 1 - GTModelTypeGeoKey: ModelTypeProjected

key 3072 tiff\_tag\_location 0 count 1 value\_offset 26942 - ProjectedCSTypeGeoKey: NAD83 / California

#### zone 2

key 3076 tiff\_tag\_location 0 count 1 value\_offset 9001 - ProjLinearUnitsGeoKey: Linear\_Meter key 4099 tiff\_tag\_location 0 count 1 value\_offset 9001 - VerticalUnitsGeoKey: Linear\_Meter

# Point clouds and DEMs

- 8. Lecture burst on generating DEMs from points
- 9. Lasgrid point density (view .tif in ArcMap)
- 10. Lasgrid DEM
- 11. blast2dem
  - Discuss tiling workaround

## **Digital Elevation Models**

- Digital representation of topography / terrain
  - "Raster" format a grid of squares or "pixels"
  - Continuous surface where Z
     (elevation) is estimated on a
     regular X,Y grid
  - "2.5D"

| 0 | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0 |
|---|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|---|
| 0 | 50 | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50 | 0 |
| 0 | 50 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 50 | 0 |
| 0 | 50 | 100 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 100 | 50 | 0 |
| 0 | 50 | 100 | 150 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 150 | 100 | 50 | 0 |
| 0 | 50 | 100 | 150 | 200 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 200 | 150 | 100 | 50 | 0 |
| 0 | 50 | 100 | 150 | 200 | 250 | 300 | 300 | 300 | 300 | 300 | 250 | 200 | 150 | 100 | 50 | 0 |
| 0 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 350 | 350 | 300 | 250 | 200 | 150 | 100 | 50 | 0 |
| 0 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 350 | 300 | 250 | 200 | 150 | 100 | 50 | 0 |
| 0 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 350 | 350 | 300 | 250 | 200 | 150 | 100 | 50 | 0 |
| 0 | 50 | 100 | 150 | 200 | 250 | 300 | 300 | 300 | 300 | 300 | 250 | 200 | 150 | 100 | 50 | 0 |
| 0 | 50 | 100 | 150 | 200 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 200 | 150 | 100 | 50 | 0 |
| 0 | 50 | 100 | 150 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 150 | 100 | 50 | 0 |
| 0 | 50 | 100 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 100 | 50 | 0 |
| 0 | 50 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 50 | 0 |
| 0 | 50 | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50 | 0 |
| 0 | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0 |

Source: http://www.ncgia.ucsb.edu/giscc/extra/e001/e001.html

- Grid resolution is defined by the size in the horizontal dimension of the pixel
  - 1 meter DEM has pixels 1 m x 1m assigned a single elevation value.

- 1 meter grid
- LiDAR returns from EarthScope data collection
- Example from flat area with little or no vegetation so ground is sampled approx. 5+ times per square meter
- How do we best fit a continuous surface to these points?
- Ultimately wish to represent irregularly sampled data on a regularized grid.



# **Generating DEMs from LIDAR**



# **Interpolation Methods**

Inverse Distance Weighting (IDW)



Isenburg, et al., 2006

# **DEM Generation via TIN Streaming**



store elevation rasters to temporary files (grouped by rows)

Isenburg, et al., 2006

# **Example Result**

## 500,141,313 Points 11 GB (binary, xyz, doubles)

50,394 × 30,500 DEM 3 GB (binary, BIL, 16 bit, 20 ft)



on a household laptop with two harddisks 
 in 67 minutes 
 64 MB of main memory 
 270 MB temporary disk space

Issgrid - rasters huge LiDAR collections into elevation/intensity/density/... grids



LAS version: 1.2 source ID: 0 created: 260/2013 'LAStools (c) by Martin Isenburg' 'TerraScan + OT' # of points: 189884 point type: 1 point size: 28

# lasgrid -i "C:\Users\ramon\Desktop\Tahoepoints.las" point\_density -otif

| □ 1 job on 4 cores +                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C selected file only                                                                                                                                                            |
| process all files                                                                                                                                                               |
| merge files into one                                                                                                                                                            |
| <u>− output</u> +                                                                                                                                                               |
|                                                                                                                                                                                 |
| VIEW                                                                                                                                                                            |
| sample points: 5000000                                                                                                                                                          |
| pixel/step size: 1                                                                                                                                                              |
| item point_density 🚽                                                                                                                                                            |
| op: lowest 💡                                                                                                                                                                    |
| fill n pixels: 0                                                                                                                                                                |
| color options +                                                                                                                                                                 |
| 🗆 subsample 🕂                                                                                                                                                                   |
| 🗆 large rasters 🕂                                                                                                                                                               |
|                                                                                                                                                                                 |
| use bounding box                                                                                                                                                                |
| use bounding box                                                                                                                                                                |
| use bounding box<br>use tile bounding box<br>specify size of raster                                                                                                             |
| use bounding box<br>use tile bounding box<br>specify size of raster<br>ncols: 512                                                                                               |
| use bounding box<br>use tile bounding box<br>specify size of raster<br>ncols: 512<br>nrows: 512                                                                                 |
| use bounding box<br>use tile bounding box<br>specify size of raster<br>ncols: 512<br>nrows: 512                                                                                 |
| use bounding box<br>use tile bounding box<br>specify size of raster<br>ncols: 512<br>nrows: 512                                                                                 |
| use bounding box<br>use tile bounding box<br>specify size of raster<br>ncols: 512<br>nrows: 512<br>specify lower left<br>lix:<br>liy:                                           |
| use bounding box<br>use tile bounding box<br>specify size of raster<br>ncols: 512<br>nrows: 512<br>specify lower left<br>lix:<br>liy:                                           |
| use bounding box<br>use tile bounding box<br>specify size of raster<br>ncols: 512<br>nrows: 512<br>specify lower left<br>lix:<br>liy:<br>format: tif                            |
| use bounding box<br>use tile bounding box<br>specify size of raster<br>ncols: 512<br>nrows: 512<br>specify lower left<br>lix:<br>liy:<br>format.tif<br>RUN<br>README <q>UIT</q> |

X

\_

|      | Unt  | titleo | d - Arcl  | Иар    |           |               |           |         |      |  |
|------|------|--------|-----------|--------|-----------|---------------|-----------|---------|------|--|
| File | Edit | View   | Bookmarks | Insert | Selection | Geonrocessing | Customize | Windows | Heln |  |

| The Early New Bookmarks inserv Selection Geoprocessing | Castornize windows ricip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                              |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|
| 🗅 🚰 🖶 🐎 🗊 🛍 x   🤊 🍽 🔶 - 1:821                          | [**] = 3 = 5 = 1 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 = 0 * 1 * 1 = 0 * 1 * 1 = 0 * 1 * 1 = | ← →   ⋈ - \`   ▶   Ø ∮ ⋿   🔛   Å # # %   ©   ■ | 3D Analyst 🛪 🕅 Tahoenoints 🗺 🕼 🗞 🐝 🍰 🖾 🖌 🚳 🔮 |



Measure fault slip at the appropriate scale B4 LiDAR topography 0.25 m DEM



of the DEM. A common method for determining the cell size of a DEM has been defined by Hu (2003). The grid size of a DEM can be estimated by: Langridge, et al. 2014

$$s=\sqrt{rac{A}{n}}$$
 Sqrt(1m²/4)= 0.5 m/pix (1

where *s* is the estimated cell size (typically in m), *n* is the number of sample points and *A* is the area containing the sample points. The





Ilasgrid - rasters huge LiDAR collections into elevation/intensity/density/... grids

Tahoepoints.las browse ... λ. \LAStools Tahoepoints.las wildcard: \*.laz add directory: E:V go 🔽 .las 🔽 .laz 🔽 .bin 🔲 .asc 🔲 .bil 🔲 .dtm ASCII files ... + | filter ... ++|transform ... +|projection ... +|overlays ...

LAS version: 1.2 source ID: 0 created: 260/2013 'LAStools (c) by Martin Isenburg' 'TerraScan + OT' # of points: 189884 point tune: 1 point size: 28

## LASGRID is neighborhood approach

## lasgrid -i

"C:\Users\ramon\Desktop\Tahoepoints.las" -elevation -average -odir

"C:\Users\ramon\Desktop" -o

"tahoegrid1m.tif"

| □ 1 job on 4 cores +   |
|------------------------|
| process all files      |
| 🥅 merge files into one |
| output                 |
| dir: CAUser            |
| appendix:              |
| filename: tahoegrid1   |
| verbose                |
| VIEW                   |
| sample points: 5000000 |
| nivel/sten size: 1     |
|                        |
| item elevation -       |
| op: average 👻          |
| fill n pixels: 0       |
| color options +        |
| 🛾 subsample 🕂          |
| 🗆 large rasters 🕂      |
| 🗖 use bounding box     |
| use tile bounding box  |
| specify size of raster |
| ncols: 512             |
| nrows: 512             |
|                        |
| specify lower left     |

- 🗆

 $\times$ 









 $\Box$   $\times$ 







LAS version: 1.2 source ID: 0 created: 260/2013 'LAStools (c) by Martin Isenburg'

'TerraScan + OT'

# of points: 189884

point type: 1 point size: 28

### BLAST2DEM is TIN approach

### blast2dem -i

"C:\Users\ramon\Desktop\Tahoepoints.las" -elevation -odir "C:\Users\ramon\Desktop" o "tahoe1mblast.tif"

| □ 1 job on 4 cores +   |
|------------------------|
| selected file only     |
| process all files      |
| merge files into one   |
| output –               |
| dir: C:\User           |
| appendix:              |
| filename: tahoe1mbla   |
| verbose                |
|                        |
|                        |
| sample points: 5000000 |
| step: 1                |
| kill triangles > 100   |
| item: elevation 👻      |
| actual values          |
| 🔿 hillside shading     |
| O gray ramp            |
| C faise colors         |
| min: 0                 |
| mm: jo                 |
| max:   O               |
| invert ramp:           |
| use the bounding box   |
| neole: 512             |
|                        |
| nrows: 512             |
| specify lower left     |
| UX:                    |
| lly:                   |
| format tif             |











## DEMs in ArcMap

Basic visualization and colorization Point and profile measurements Raster Math (difference and conditional) Canopy 3D viewing in ArcScene



#### Map Algebra expression



"tahoeblast1m.tif" - "tahoeblast1mclass2.tif"

#### Output raster

C:\Users\ramon\Desktop\canopy.tif

Note that is the beginning of other sorts of topographic differencing e.g., Morphological sediment budgeting

## JOSEPH M. WHEATON

Research Linking Fluvial Geomorphology & Ecohydraulics

http://www.joewheaton.org/



2



#### Map Algebra expression

| Layers and variables<br><pre> canopy.tif </pre> tahoeblast1m.tif | 7 | 8 | 9 / == != & |   |   |    | Conditional<br>Con<br>Pick |                 |
|------------------------------------------------------------------|---|---|-------------|---|---|----|----------------------------|-----------------|
| ◆tahoeblast1mshd.tif ◆tahoeblast1mclass2.tif                     | 4 | 5 | 6           | * | > | >= | I                          | SetNull<br>Math |
| ◆tahoeblast1mclass2shd.tif                                       | 1 | 2 | 3           | - | < | <= | ^                          | Abs             |
|                                                                  |   | 0 |             | + | ( | )  | ~                          | Exp10<br>Exp2   |
| Con("canopy.tif" >= 1,"canopy.tif")                              |   |   |             |   |   |    |                            |                 |
| Output raster                                                    |   |   |             |   |   |    |                            |                 |
| C: \Users \ramon \Uesktop \canopyge1.tif                         |   |   |             |   |   |    |                            | 6               |

Con: Performs a conditional if/else evaluation on each of the input cells of an input raster. Really powerful!!!



Ê

### ArcScene Properties tabs: Symbology—change colormap

General Source Extent Display Symbology Base Heights Rendering

Elevation from surfaces —

 $\bigcirc$  No elevation values from a surface

Floating on a custom surface:

Rendering Shade areal features High quality enhancement



### ArcScene Properties tabs: Symbology—change colormap

General Source Extent Display Symbology Base Heights Rendering

Elevation from surfaces

○ No elevation values from a surface

Floating on a custom surface:

C:\Users\ramon\Desktop\tahoeblast1m.tif

Rendering Shade areal features High quality enhancement