Introduction to Lidar, Terrestrial Laser Scanning Applications

Christopher Crosby UNAVCO / OpenTopography, Boulder, CO

Light Detection and Ranging (lidar)

- Accurate distance measurements with a laser rangefinder
- Distance is calculated by measuring the two-way travel time of a laser pulse.
- Near IR (1550nm) or green (532nm)

Lidar platforms

J. Stoker, USGS

Light Detection and Ranging (lidar)

Similar technology, different platforms:

Terrestrial Laser Scanning (TLS)

- Also called ground based lidar or Tlidar.
- Laser scanning moving ground based platform = Mobile Laser Scanning (MLS).
- Laser scanning from airborne platform = Airborne Laser Scanning (ALS).

Light Detection and Ranging (lidar)

System:	Spaceborne (e.g. GLAS)	High Altitude (e.g. LVIS)	Airborne (ALS)	Terrestrial (TLS)
Altitude:	600 km	10 km	1 km	1 m
Footprint:	60 m	15 m	25 cm	1-10 cm
Vertical Accuracy	15cm to 10m depends on slope	50/100 cm bare ground/ vegetation	20 cm	1- 10 cm Depends on range which is few meters to 2 km or more

Lidar & Autonomous Vehicles

Sight Lines, ScanLAB: https://vimeo.com/145248208

Lidar & Autonomous Vehicles

Light Detection and Ranging (lidar)

Ian Madin, DOGAMI

Lidar data collection

Surface Point Spacing

Scan line spacing, swath width, spot size and overlap can all be defined as necessary to achieve target data to specification

Typical Lidar Data Collection Parameters

Aircraft: Cessna 337 Skymaster Personnel

- One pilot, one operator in plane
- GPS ground crew (2 to 10+ people)

Scanner: **PRF**: Flying height: Flying speed: Swath overlap: **Ground truthing: Navigation solution:** Point spacing: sub-meter Nominal Accuracy (on open hard and flat surface)

- Vertical: 3 6 cm.
- Horizontal: 20 30 cm.

How a Lidar instrument works

- Transmits laser signals and measures the reflected light to create 3D point clouds.
- Wavelength is usually in the infrared (~1550nm) or green (532nm) spectrum

TLS Instrument and Survey Parameters

Beam Divergence

Df = (Divergence * d) + Di

@100m, Df = 36mm @500m, Df = 180mm @1000m, Df = 360mm!

TLS Instrument and Survey Parameters

TLS Instrument and Survey Parameters

Riegl VZ400 Maximum measurement range as function of target material

Discrete pulse and full waveform

Discrete pulse = binary yes or no return

Full waveform = digitized backscatter waveform

Benefits of full waveform?

- More resolution between pulse width ambiguity
- Spectral property information
- Improved fitting of geometrically defined targets.

Each laser pulse can produce multiple consecutive measurements from reflections off several surfaces in its path

Ian Madin, DOGAMI

- Left = point cloud view of the tree in the photo on the right. Each point is colored by which return it was from a particular pulse:
- Red= 1st
- Yellow = 2nd
- Green = 3rd

Multiple Return lidar systems

All returns (16,664 pulses)

1st returns

2nd returns (4,385 pulses, 26%)

3rd returns (736 pulses, 4%)

4th returns (83 pulses, <1%)

J. Stoker Image courtesy Hans-Erik Anderson

Comparison: ALS vs TLS

San Gabriel Mountain 1-m DEM from airborne LiDAR

Comparison: ALS vs TLS

Comparison: ALS vs TLS

Showcase Video for TLS

Showcase Tool #1: TLS Terrestrial Laser Scanner

TLS Research Applications

Project: 2011 Japan Tsunami measurements
PI: Hermann Fritz (Georgia Tech)
NSF RAPID project

2011 Japan Tsunami

El Mayor-Cucapah Earthquake, 2010

- April 4, 2010
- Mw 7.2
- ~100km rupture
- CA-Mexico border to the gulf
- > 3m right-normal slip north of epicenter
- < 1m right-normal blind faulting south of epicenter

Motivations: Data Collection

• Preserve primary rupture features for:

- •Remote measurement/analysis
- Comparison to future scans
- Scan ruptures in a variety of geologic and geomorphic settings

El Mayor-Cucapah Earthquake, 2010

Scale of TLS coverage

•~200m along-strike distances

El Mayor-Cucapah Earthquake, 2010

Data Collection

Scarp Erosion, 2010-2011

SoCal Paleoseismology

- Project Highlight: Precariously balanced rock (PBR) near Echo Cliffs, southern California.
- PI: Ken Hudnut, USGS.
- Goal: generate precise 3D image of PBR in order to calculate PBR's center of gravity for ground motion models useful for paleoseismology, urban planning, etc.

⁽Hudnut et al., 2009)

Precariously Balanced Rocks, PBRs

3D surface model and simulated 1994 Northridge waveforms

UNAVCO

Four Mile Fire, CO, Erosion (PIs: Moody, Tucker)

Mill Gulch earth flow, Sonoma, CA)

Repeat surveys give ability to quantify temporal change.

Integration of TLS and ALS data

Steve DeLong, USGS

Scanning in Polar Environments

- 10-15 Antarctic and Arctic Projects per yr
- Remote locations, challenging logistics (helicopter, icebreaker, backpack)
- Extreme environmental conditions:
 - > -35C to +15C, 20-65 knot winds

Science:

- Geomorphology: Frost polygons and ancient lake beds
- *Glaciology:* Glacier melt and ablation
- Biology/Ecology: Weddell Seal volume; Microtopology of tundra in Alaska
- Archeology: Human impact of climate change

Scanning in Polar Environments

Mount Erebus, Antarctica

- Lava lake scanned 2008 2013, revealing behaviors invisible to naked eye
- Inner crater scan used to augment and truth 2003 aerial scans
- Scans of ice caves and ice towers help determine thermal / energy budget of volcano

Scanning in Polar Environments

Fiorillo, et al., 2014, Geology, DOI: 10.1130/G35740.1

Everglades Biomass, Wdowinski

• Scanning to measure biomass in Everglades National Park (PI: Wdowinski).

Everglades Biomass, Wdowinski

Thanks!

crosby@unavco.org

@OpenTopography

Facebook.com/ OpenTopography

@OpenTopogaphy

info@opentopography.org

