LiDARViewer

Point-based LiDAR visualization and analysis

Imaging and Analyzing Southern California's Active Faults with LiDAR
San Diego Supercomputer Center
November 5, 2013

Peter Gold (UT Austin)

What is **LiDAR**Viewer?

Open source software for point-based LiDAR visualization

Who developed **LiDAR**Viewer?

- UC Davis WM Keck Center for active Visualization in the Earth Sciences (keckCAVES.org)
- Geoscientists + Computer scientists focused on interactive exploration of 3D data

Immersive Visualization

CAVE: Virtual reality environment that allows:

- Immersive 3D visualization
- Interactive data manipulation
- Quantitative measurement

LidarViewer

 Point based tool for lidar visualization and analysis

Visualization environments

- Standard 2D desktops/laptops
- 3D-enabled desktops
- Support for position tracked tools (e.g., Razer Hydra, Xbox Kinect)
- Immersive environments (fully position tracked, e.g. CAVES)
- Linux/unix only

Key Features of **LiDAR**Viewer

- Rapid data processing
 - Short lag time between data collection/receipt and use
- Multi-billion point datasets
 - Full datasets can be loaded without decreasing resolution
 - Out of core processing, hierarchical data structures, view-dependent resolution
- Point-based visualization
 - Visualizing point clouds, rather than digital surface models
 - Looking at the actual measurement, rather than an interpretation
- 3D interactivity, data selection, and measurement

Real-time hillshading and lighting adjustment

Real-time point selection

- Best-fit approximations (planes, lines, strike and dip)
- Distance to plane visualization
- Vegetation selection/removal

Kreylos et al., 2013, *Geosphere*

Real-time point selection

- Best-fit approximations (planes, lines, strike and dip)
- Distance to plane visualization
- Vegetation selection/removal

Kreylos et al., 2013, *Geosphere*

Real-time point selection

- Best-fit approximations
- Distance to plane visualization
- Vegetation selection/removal

Automatic: 47% of points classified as vegetation

Manual: 13% of points classified as vegetation

Automatic classification = fast, but too aggressive

Manual classification = time consuming, maybe not aggressive enough

Kreylos et al., 2013, Geosphere

LiDARViewer Resources

- www.keckcaves.org
- http://wiki.cse.ucdavis.edu/keckcaves:home
- Gold, P.O., Oskin, M.E., Elliott, A.J., Hinojosa-Corona, A., Taylor, M.H.,
 Kreylos, O., and Cowgill, E., 2013, Coseismic slip variation assessed from
 terrestrial lidar scans of the El Mayor-Cucapah surface rupture: Earth and
 Planetary Science Letters, v. 366, p. 151–162, doi: 10.1016/j.epsl.
 2013.01.040.
- Kreylos, O., Oskin, M., Cowgill, E., Gold, P., Elliott, A., and Kellogg, L., 2013,
 Point-based computing on scanned terrain with LidarViewer: Geosphere,
 v. 9, p. 546–556, doi: 10.1130/GES00705.S2.