Exercise 4: Extracting Information from DEMs in ArcMap

Introduction

This exercise covers sample activities for extracting information from DEMs in ArcMap. Topics include point and profile queries and surface differencing applied to canopy map calculation and repeat LiDAR data acquisition. For all but the repeat LiDAR data analysis, we use the same standard DEMs as in Exercise 2.

Point and Profile queries

It is possible to extract precise elevation values at a point or along a profile from the DEM.

Point query

To determine the elevation at a point, choose the Identify tool and click at the point. When you first click on the DEM, the Identify dialogue box will appear and you should choose the layer from which you wish to identify elevation.

I clicked along the road where it crosses the fault here and the elevation of the bare earth DEM there is 394.17 m.

Using Earthscope and B4 LiDAR data to analyze Southern California's active faults A joint SCEC/OpenTopography/USGS/UNAVCO research and education workshop

Elevation profile

🤶 Untitled	- ArcMap - ArcInfo		
<u>F</u> ile <u>E</u> dit	View Bookmarks Insert Selection	on <u>T</u> ools <u>W</u> indow <u>H</u> elp	
🗅 🚅	Data View	• 🔸 1:7,045 💌	1
	Layout View		M. Cert
🕞 🥩 Lay	Zoom Data		See.
	Zoom La <u>v</u> out	2 CM	
	<u>T</u> oolbars ►	✓ Main Menu	15-16
	✓ <u>S</u> tatus Bar	3D Analyst	C. al
	Overflow Annotation	Advanced Editing	
	Scrollbars	Animation	100
•	🖾 <u>R</u> ulers	Annotation	Z
± 🗆	Guides	ArcPad	Self-
+ 🗹	Grid	ArcScan	der.
+ 🗹	Data Frame Properties	COGO	
	a sata na <u>n</u> e riopertes	Cadastral Editor	

To determine the elevation along a profile, you need the 3D Analyst Toolbar (Menu->View->Toolbars->3D Analyst).

To indicate the profile location, make sure that the layer from which you want the data to come is selected. Then click on the Interpolate Line tool.

Draw your profile line by clicking once at the beginning, clicking once again at any vertices where the profile might turn, and double clicking at the end.

You can use the Select Elements tool (black arrow on the main tool bar) to select your profile and then delete it if you don't like it. Once you are ready to compute the profile, click on the Create Profile Graph button. Depending on the DEM file size and computer processor and memory, it can take a minute or so to extract the elevations. The resulting profile appears in a floating window. Right click on the profile figure and choose properties and you can change aspects of the plot. If you want to export the data for processing in a spreadsheet or other application, click on Export... Click the Data tab and choose the format, what to include, and the delimiter.

	- Mitt	Export Dialog	X
6 The	Ste	Picture Native Data	Include:
Profile Graph Title Profile Graph Title	Identify	(all)	Point Index ✓ Point Labels ✓ Header
430	Print Duplicate Copy as Graphic Add to Layout	© Text C XML C HTML Table	Delimiter:
	Refresh Save Export		Text Quotes:
Profile Graph Subtitie	Advanced Properties Properties	<u>C</u> opy <u>S</u> ave	S <u>e</u> nd Close

Canopy height maps (Raster Math)

In many DEM processing activities, it may be useful to subtract one DEM from another. As an interesting example, we can compute a Canopy Height map by subtracting the Bare Earth DEM from the Full Feature DEM. To do so, we use a powerful tool in ArcMap's Spatial Analyst called the Raster Calculator. Make sure that the Spatial Analyst tool is displayed (Menu->View->Toolbars->Spatial Analyst). In the Raster Calculator, syntax is important (even spaces, etc.), so you will have better success if you double click on the layers and single click the operations as you build the expression. When done, click Evaluate.

The resulting calculation may have negative values which means that for some reason (classification or gridding errors), the bare earth is actually above the full feature. To produce the canopy map, again use the Raster Calculator to return the values of the first calculation that are greater than 1 m. Your expression should be: con([Calculation] >= 0.5, [Calculation]). Again, only type the first three letters (con) and click the rest). This expression is a conditional (hence con) which returns the values in [Calculation] (the Full Feature – Bare Earth map) where the [Calculation] is greater than or equal to 0.5.

Using Earthscope and B4 LiDAR data to analyze Southern California's active faults A joint SCEC/OpenTopography/USGS/UNAVCO research and education workshop

I Raster Calculator							
Layers:							
baremos baremosshd	•	7	8	9	=	\diamond	And
Calculation Calculation2	/	4	5	6	>	>=	Or
fullmos fullmosshd	•	1	2	3	<	<=	Xor
	+		 _		()	Not
con([Calculation] >=	0.5, [Calcu	lation])					*
		"					
							~
About Building Express	sions		Evalua	te	Cano	el	<<
						-	

Remove [Calculation] (right click and choose delete). Right click on [Calculation2] (the result of the last Raster Calculator conditional)->Data->Make Permanent.

🗆 🗲	ا ≹	Lay	/ers					
[- 5	✓	Calculat	ion2				
			Valu		<u>C</u> opy			
			High	×	<u>R</u> emove			
			Low		Open Attribute <u>T</u> able			
1	+ [fullmos		Joins and Relates	- ▶		
[+ [fullmos	۲	Zoom To Layer			
[ΞC		baremo	4	Zoom To Make Visible			
	+ L		baremo	den.	Zoom To Parter Perclution	.		
				- 244	Zoom to Raster Resolution	'		
					<u>V</u> isible Scale Range	<u> </u>		
					<u>D</u> ata	•	Repair Data <u>S</u> ource	
					Save As La <u>v</u> er File		<u>E</u> xport Data	
				P	Properties		<u>M</u> ake Permanent	
						-	<u>V</u> iew Metadata	Save the file with related file

Delete [Calculation2] and add the Canopy file you just made permanent. Change the color ramp (right click on Canopy in Table of Contents->Properties->Symbology tab). In this case, we used a light to dark green with darkest values corresponding to the tallest canopy. Presumably there are trees or structures which are as tall as 73 m.

Differencing serial or repeat LiDAR scans (more raster math)

This example comes from Ian Madin at the Oregon Department of Geology and Mineral Industries (DOGAMI; <u>www.oregongeology.org</u>). In the Oregon Coast Ranges, two LiDAR datasets were acquired, one during a time of "Leaf off" (fall-winter) and later during "Leaf on" (spring-summer). Both data sets were classified and bare earth DEMs produced. The relevant data files are in the DOGAMI_DATA directory (be_leaf_off.img and be_leaf_on.img). The ERDAS Imagine .img format is a flexible and common raster data format.

Load the two DEMs and the orthoimage into a new ArcMap project. Perform some of the basic visualization activities presented in Exercise 2.

III Raster Calculator							
Layers:							
be_leaf_off.img be_leaf_on.img	•	7	8	9	=	0	And
Hillshade of be_leaf_off.ir Hillshade of be_leaf_on.ir	/	4	5	6	>	>=	Or
	-	1	2	3	<	<=	Xor
4	+		D		()	Not
[be_leaf_off.img] - [be_l	.eaf_on	.img]					*
							-
About Building Expression	s		Evalua	te	Cano	el	<<

Using the Raster Calculator again (Spatial Analyst), subtract be_leaf_on.img (later data) from the earlier acquired be leaf off.img.

Make the resulting [Calculation] grid permanent (right click in the Table of Contents->Data->Make Permanent) and load the newly saved grid.

General Source Exten	t Display Symbology Fields Joins &	Relates	
now: Inique Values	Draw raster grouping values into	lasses	Import
lassified tretched	Fields Value: <value> Normalization: <none></none></value>	Classification Natural Breaks (Je Classes: 5	enks) Classify
	Color Ramp:		•
	Symbol Range -7.179992676 -0.76873779 -0.768737793 -0.23757934 -0.237579346 -0.02359008 0.023590088 -0.509002686 0.509002686 -5.049987793	-7.1799926760.768737793 -0.7687377930.237579346 -0.237579346 - 0.023590088 0.023590088 - 0.509002686 0.509002686 - 5.049987793	
1	Show class breaks using cell values Use hillshade effect Z:	Display NoData a	s+

Let's change how the elevation difference is displayed. Right click on the newly saved difference grid, click on properties and select the Symbology Tab. Show Classified (yes, compute unique values if necessary). Click on Classify.

Using Earthscope and B4 LiDAR data to analyze Southern California's active faults A joint SCEC/OpenTopography/USGS/UNAVCO research and education workshop

Classification	A Card		? ×
Classification		Classification Statistics	
Method: Manual		Count:	22203553
		Minimum:	-7.179992676
Classes: 5	<u> </u>	Maximum:	5.049987793
Data Exclusion		Sum:	-2,156,968.967
Exclusion	Sampling	Standard Deviation:	-0.097145217
	Company		
Columns: 100 🛨	🗌 Show Std. Dev. 🔲 Show Mea	n	
		8	Break Values %
6000000-T	ຕ່ =	m 82	-3
	· · · · · · · · · · · · · · · · · · ·	24 96	-1
500000-		9.0	1
			5.049987793
400000-			
300000-			
2000000-			
1000000-	10		
0			
-7.17999267	6 -4.122497559 -1.065002441 1.	992492676 5.04998779:	OK
Considerate data us	hee	1029EE Elemente in Class	Cancel
	lues	103655 Elements in Class	
Layer Properties			? ×
General Source Extent		ton	
Show:		163	
Unique Values	Draw raster grouping values into class	ses	Import
Classified			
Stretched	Fields	Classification	
	value: <value></value>	Manual	
	Normalization: <pre></pre>	✓ Classes: 5 ▼ Classes:	lassify
	Color Ramp:		-
	Symbol Banga	Label	
	-7 170002676 2	-7 1700026762	
	-31	-7.1799920703	
	-1-1	-0.9999999999 - 1	
	1-3	1.000000001 - 3	
	3 - 5.049987793	3.000000001 - 5.049987793	
	-		
	1		
	Show class breaks using cell values	Display NoData as	-
	Use hillshade effect Z: 1		
		OK Can	cel Apply

In the classification dialogue, change the break values to -3, -1, 1, 3 and keep the maximum value (5.04...) and click ok. You can see in the main histogram the distribution of elevation differences. Most are nearly 0 which is to be expected. These classification breaks will provide a symmetric representation of the elevation difference.

Double click on the color boxes in the symbol column and progressively select purple for the less than -3 m range, blue for -3 to -1 m, no color for -1 to 1 m, orange for 1-3, and red for >3 m.

Display a hillshade or slopeshade produced from the be_leaf_off.img DEM underneath the difference map. Image shows areas of erosion as orange and red, deposition as blue and purple. You should find two landslides and three debris flow scars. Widespread noise is due to differences in ground models under heavy vegetation. Serial comparisons require high quality data.

