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U.S. Exploring Expedition
(Wilke’s Expedition), 1838-1842

“The whole region elsewhere is broken

with hills of little seeming interest, and

bristled with evergreens. ...presenting in

general little that is striking in outline”
-|.D. Dana, 1845
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Outline: High-resolution topography for
interdisciplinary research

Washingten

-~

1. Critical zone architecture

2. Hillslope transport models

3. Post-fire change detection and sediment
budgets

4. Paleoseismology and landslide chronology




1) Can the critical zone be
predicted from topography?
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Critical zone
models

Topographic stress and
fracturing (St. Clair et al,
2015)

Water table and bedrock
exhumation (Rempe &
Dietrich, 2014)

Reaction front propagation
(Lebedeva and Brantley,
2014)

Climate-dependent frost
weathering (Anderson, 2015)

Riebe et al., 2016
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Hypothesis: Balance b/w

fractures due to erosion and weathering
topographic stresses

weathered
bedrock
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Steady rapid erosion Slow erosion (transient)
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Least compressive stress,c| ;. (MPa) P-wave velocity (km/s)

1) Challenges and needs: )

-:-
* Topographic context and process models to
inform instrumentation and sampling \A \_/\
 Smooth/enhance features: how? how much?

e Can emerging tools (e.g., machine learning) St. Clair et al.. 2015 50,,,
help reveal signals/patterns?

Rempe & Dietrich, 2014
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Quantifying surface slope and roughness (TLS)

C2C absolute digtances (2)
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Post-fire: Drone and SfM for topography
Horse Prairie Crk Fire, August 2017



[1] Bulk Amplitude Parameters (Elevation Probability Distribution-Based)

Quantifying roughness Roughness Metric Notation  Units Description Data

X £ R 7 P e Standard deviation of elevations a, m Standard deviation of elevations over the whole plot Cloud
o %fg 3L () Inter-guartile range IQR m Inter-quartile range of elevations over the whole plot Cloud
poL AN R ; ; Skewness zy - Skewness of above elevation distribution Cloud
2 Kurtosis z - Kurtosis of above elevation distribution Cloud
, [2] Localised Elevation Differences
Median deviation from plane Median point deviation from a fitted plane
(50 mm window) Zon.s0 m (50 mm kernel size) Cloud
95" 9%ile deviation from As above, but the 95" percentile to highlight the
plane (50 mm window) Zon.aon m roughest areas Cloud
Root-Mean-Squared (RMS) of nearest neighbour
Ruggedness RMS Rugpss m elevation differences DEM
Ruggedness max Rugsax m Maximum of nearest neighbour elevation differences DEM
Within-cell elevation range o m Mean of height ranges within each 5 mm cell DEM
[3] Spacing Parameters
Peak density Pl m Density of peaks DEM
Fit density Pt m* Density of pits DEM
[4] Hybrid Parameters
; Mean slope Sm @ Mean of cell slopes DEM
"3 oF 7 SRS s == o oL Standard deviation of slopes Sa ¢ Standard deviation of cell slopes DEM
. - . . c Mormalised eigenvalue ratios of directional data
Peat erosion Smith and Warbu rton, 2018 Ratio of 1% and 2™ eigenvalues In(5,/5,) - calculated ff:rm the orientation tensor Cloud
Ratio of 2™ and 3™ eigenvalues Ini 5/5%) - As above Cloud
Ratio between surface profile and straight line length,
Fau It su rface as erities Profile tortuosity T - averaged over each row and column of the DEM DEM
10° p 19 . BFOdSky et Ialr, 2016 Roughness element frontal area per unit ground area,
' ' Frontal area (per unit planar area) F - averaged for each cardinal direction DEM
Following Lettau (1969) and Smith et al. (207 6).
Calculated as the mean height of points above
a detrended plane multiplied by a drag coefficient
(0.5) and the ratio between the frontal area (above the
Aerodynamic roughness z mm detrended plane) and full plot planar area DEM
[5] Geostatistics and Multi-scale Parameters
Geostatistical range a m Range of fitted semivariograms Cloud
sill c mm Sill of fited semivariograms Cloud
Slope of the power law relationship between
Slope of power spectral density function PsD - radially-averaged spectral power and wavevectors DEM

[6] Anisotropy Parameters
Anisotropy ratio (i.e. minimum:maximum) of the ranges
of directional semivariograms calculated in 22.5

Power Spectral Density [m?]

Range anisotropy ratio Aani - degree windows Cloud
Sill anisotropy ratio Cani As above for the sill of fitted semivariograms Cloud
z, anisotropy ratio Fiani - Anisotropy ratio of zg calculated for all cardinal directions DEM
. Anisotropy ratio of frontal area calculated for all cardinal
Laser profilometer Frontal area anisotropy ratio Fani - directions DEM
10-15 L NN L L L Anisotropy ratio of tortuosity calculated on perpendicular
10‘3 1 0‘2 10" 1 00 101 1 02 Tortuosity anisotropy ratio Tani - transects DEM

Wavelength [m]



2) Challenges and Needs:
* Accessible classification algorithms
« Computational efficient point cloud processing and TLS system

i 310°

topographic derivatives (parallelization)
* Surface roughness: process context and error analysis

e
,,,,,,

Point cloud

Hobson, 1972
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Eagle Crk fire, 50,000 acres, September 2017
Columbia River Basalt and waterfalls

Lidar acquisitions: 2005, 2009, 2010, 2014
May 2018 NCALM: NSF RAPID (GLD), ODOT,

USACE, USFS, Gorge Commission
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3) Challenges and needs: | _ Sy ¥

« Change detection in steep (>45°), ' |
forested terrain is non-trivial

* Integration of multiple datasets (ALS,

TLS, drone SfM) :
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Next step: Sediment
continuity and transport
paths
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Heckmann and Vericat, 2018




Hunting for Landslides from Cascadia’s  4) paleoseismology “Will }tQ.P_.e .
Great ECII’thC]UCIkGS Perkins et al., Eos (Aug 8, 2018) A g

Researchers examine the rings of drowned trees in landslide-dammed

lakes for clues to today’s earthquake hazards in the Pacific Northwest.

Klickitat Lake Site
Lincoln County, Oregon
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“The country offers singular obstacles to the study
of geology...the trees are so effective in holding the
soil firmly to the hillsides that it is hard to find a
rock exposure or even a stone big enough to throw
at a bird...This is one of those districts where the
geologist must work out his map on his hands and
knees.”  -Clarence E. Dutton (1841-1912)

i

i R. Van Pelt



LDV -- V1.48 -- USDA Forest Service -- Pacific Northwest Research Station
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