High Resolution Topography and 3D Imaging I: Introduction to Terrestrial Laser Scanning

Christopher Crosby & Keith Williams

2019 GSA Short Course, Phoenix, AZ

INTRODUCTION

GAGE National Science Foundation's Geodetic Facility for the Advancement of Geoscience

UNAVCO is a <u>non-profit</u>, membership governed <u>consortium</u> of universities that facilitates geoscience research and education using <u>geodesy</u>.

UNAVCO supports <u>GPS</u>, borehole geophysics, <u>InSAR</u>, and <u>lidar</u> data acquisition, data archiving, equipment, development & testing, training.

UNAVCO Education & Community Engagement works to promote a broader understanding of Earth science.

https://www.youtube.com/watch?v=yxLMk120vMU

GEODETIC IMAGING AT

Terrestrial LiDAR

Airborne/ Spaceborne InSAR

Airborne/ **Spaceborne LiDAR**

THE SCIENTIFIC VALUE OF HIGH RESOLUTION TOPOGRAPHY

EXAMPLE SCIENTIFIC MOTIVATIONS

- How do geopatterns on the Earth's surface arise and what do they tell us about processes?
- How do landscapes influence and record climate and tectonics?
- What are the transport laws that govern the evolution of the Earth's surface?
- Coupled hydrogeomorphic-ecosystem response to natural and anthropogenic change
- Landscape and ecosystem dynamics
- Volcano form and process
- Changes in volume of domes, edifice, flows over time

"Seeing" at the appropriate scale means measuring at the right scale

> Surface processes act to change elevation through erosion and deposition while tectonic processes depress or elevate the surface directly their record is best characterized with the right fine scale.

10 11 12 13 14 15 16 17 18 19 20

Applies in particular to statistical self similarity

How long is the coast of Britain? Statistical self-similarity and fractional dimension Science: 156, 1967, 636-638

http://en.wikipedia.org/wiki/How Long Is the Coast of Britain%3F Statistical Self-Similarity and Fractional Dimension

B. B. Mandelbrot

Global and regional topography/bathy (10s-100s m/pix)

GETTING THE RIGHT COVERAGE IN TIME, SPACE, AND RESOLUTION FOR THE QUESTION

Local to site scale topography (dm to m / pix) Structure from Motion A Airborne LiDAR С onboard GPS and IMU motion of camera sequence of photographs constrain position and provides depth orientation of aircraft information adar Topograph scene structure refers to +ASTER, ALOS, etc distance between scanner and both camera positions ground return determined from and orientations and delay between outgoing pulse the topography and reflected return DigitalGlobe hadow zor features matched in multiple photographs laser pulse **B** Terrestrial LiDAR IADES lines show track of scan across ground circles show actual ground return footprints

> Johnson, K., Nissen, E., Saripalli, S., Arrowsmith, J.R., McGarey, P., Scharer, K., Williams, P., Blisniuk, K., Rapid mapping of ultra-fine fault zone topography with Structure from Motion, Geosphere, v. 10; no. 5; p. 1–18; doi:10.1130/GES01017.1, 2014.

TLS Community Support

Support Resources

- Instrumentation
- Field engineering
- Data processing
- Training
- Data archiving & dissemination

Community Building

- Workshops
- Inter-Agency collaborations & partnerships

Education and Outreach

- Training courses
- Field courses

Charting the Future of Terrestrial Laser Scanning (TLS) in the Earth Sciences

Boulder, Colorado, USA. October 17-19, 2011 Information and registration: www.unavco.org

TLS survey of Arenal Volcano, Costa Rica (PI, A. NEWMAN)

GSA 2012 UNAVCO TLS short course, Charlotte, NC

UNAVCO TLS Instrument Pool

|--|

Scanners funded by the National Science Foundation

Laser wavelength		532 nm (green)			
Effective range	2050 m	1400 m	500 m	2000 m	150 m
High-speed meas. rate	396,000 pts/sec	122,000 pts/sec	125000 pts/sec	11,000 pts/sec	50,000 pts//sec
Precision	5 mm	5 mm	5 mm	10 mm	4 mm
Accuracy	8 mm	8 mm	5 mm	10 mm	6 mm
Field of view	100°x 360°	100°x 360°	100°x 360°	80°x 360°	270°x 360°
Dimensions	308 mm x 196 mm	308 mm x 180 mm	308 mm x 180 mm	463 mm x 210 mm	238 mm x 395 mm
Weight	9.9 kg	9.8 kg	9.8 kg	16 kg	13 kg

Related resources

- Campaign and RTK GPS, tripods, various power supply options
- Instrument validation range
- License server with access to RiScan Pro, Cyclone, ArcGIS, Blue Marble Geographic Calculator & Global Mapper.

Photo Nathan Niemi

Light Detection and Ranging (lidar)

- Accurate distance measurements with a laser rangefinder
- Distance is calculated by measuring the two-way travel time of a laser pulse.
- Near IR (1550nm) or green (532nm)

Photo Bruce Douglas

How is Range measured?

Time of flight

Time it takes for emitted pulse to reflect off object and return to scanner.

Phase Shift

Distance is calculated along a sinusoidally modulated laser pulse.

LIDAR PLATFORMS

BUSINESS WIRE COMMERCIAL PHOTO

J. Stoker, USGS

Light Detection and Ranging (lidar)

Similar technology, different platforms:

Terrestrial Laser Scanning (TLS)

- Also called ground based lidar or Tlidar.
- Laser scanning moving ground based platform = Mobile Laser Scanning (MLS).
- Laser scanning from airborne platform = Airborne Laser Scanning (ALS).

Light Detection and Ranging (lidar)

System:	Spaceborne (e.g. GLAS)	High Altitude (e.g. LVIS)	Airborne (ALS)	Terrestrial (TLS)
Altitude:	600 km	10 km	1 km	1 m
Footprint:	60 m	15 m	25 cm	1–10 cm
Vertical Accuracy	15cm to 10m depends on slope	50/100 cm bare ground/ vegetation	20 cm	1–10 cm Depends on range, which is few meters to 2 km or more

GLAS/ICESAT

Lidar & Autonomous Vehicles

Lidar & Autonomous Vehicles

Sight Lines, ScanLAB: https://vimeo.com/145248208

Discrete pulse = binary yes or no return. Only location of return is saved.

Full waveform = digitized backscatter waveform. Saves the full return energy signature

Data size / processing time vs. enhanced information

T. Goulden, NEON

LIDAR DATA DELIVERABLES

A *point cloud* is the fundamental lidar dataset – discrete x,y,z points with attributes (Intensity, return number & number of returns, classification, gps time, RGB...):

Using Terrestrial and Airborne Lidar

San Gabriel Mountain 1-m DEM from airborne lidar

Using Terrestrial and Airborne Lidar

Using Terrestrial and Airborne Lidar

Using Terrestrial and Airborne Lidar

Using Terrestrial and Airborne Lidar

Showcase Video for TLS

Showcase Tool #1: TLS Terrestrial Laser Scanner

TLS Research Applications

Panasona

 Project: 2011 Japan Tsunami measurements
PI: Hermann Fritz (Georgia Tech)

NSF RAPID project

2011 Japan Tsunami

El Mayor-Cucapah Earthquake

- April 4, 2010
- Mw 7.2
- ~100km rupture
- CA-Mexico border to the gulf
- > 3m right-normal slip north of epicenter
- < 1m right-normal blind faulting south of epicenter

TLS coverage

P. Gold, UCD

Scarp Erosion, 2010

Paleoseismology

- Project Highlight: Precariously balanced rock (PBR) near Echo Cliffs, southern California.
- PI: Ken Hudnut, USGS.
- Goal: generate precise 3D image of PBR in order to calculate PBR's center of gravity for ground motion models useful for paleoseismology, urban planning, etc.

⁽Hudnut et al., 2009)

Four Mile Fire Erosion, Boulder, CO

Rengers et al., 2016, JGR Earth Surface

Scanning in Polar Environments

- 10–15 Antarctic and Arctic projects/year
- Remote locations, challenging logistics (helicopter, icebreaker, backpack)
- Extreme environmental conditions:
 - > -35C to +15C, 20–65 knot winds

Science:

- Geomorphology: Frost polygons and ancient lake beds
- *Glaciology:* Glacier melt and ablation
- Biology/Ecology: Weddell Seal volume; Microtopology of tundra in Alaska
- Archaeology: Human impact of climate change

Scanning in Polar Environments

Mount Erebus, Antarctica

- Lava lake scanned 2008–2013, revealing behaviors invisible to naked eye
- Inner crater scan used to augment and truth 2003 aerial scans
- Scans of ice caves and ice towers help determine thermal / energy budget of volcano

Scanning in Polar Environments

Dinosaur Trackway, Denali National Park, AK

Fiorillo et al., 2014, Geology

Everglades Biomass, Florida

• Scanning to measure biomass in Everglades National Park (PI: Wdowinski).

Everglades Biomass, Florida

Thanks! crosby@unavco.org http://unavco.org/tls

Photo: B. Hodge, UNAVCO – Location: RMNP