Project PI: Hugo A. Gutierrez Jurado

1. ALTM Specifications

This survey used an Optech GEMINI Airborne Laser Terrain Mapper (ALTM) serial number 06SEN195 mounted in a twin-engine Cessna Skymaster (Tail Number N337P).

System specifications appear below in Table 1.

Operating Altitude	80 - 4000 m
Horizontal Accuracy	1/11,000 x altitude; ±1-sigma
Elevation Accuracy	5 - 10 cm typical; ±1-sigma
Range Capture	Up to 4 range measurements per pulse, including last
	4 Intensity readings with 12-bit dynamic range for each
Intensity Capture – see note below	measurement
Scan Angle	Variable from 0 to 25 degrees in increments of ±1degree
Scan Frequency	Variable to 100 Hz
Scanner Product	Up to Scan angle x Scan frequency $= 1000$
Pulse Rate Frequency	33 - 167 KHz
	Applanix POS/AV including internal 12-channel 10Hz GPS
Position Orientation System	receiver
Laser Wavelength/Class	1047 nanometers / Class IV (FDA 21 CFR)
Beam Divergence nominal (1\e full	
angle)	Dual Divergence 0.25 mrad or 0.80 mrad

Table 1 Optech GEMINI specifications.

See <u>http://www.optech.ca</u> for more information from the manufacturer.

2. Survey Area

The survey area was located east of Ladron Peak in New Mexico, about 40 kilometers north-northwest of Socorro. It consisted of a single polygon as shown in the figure below. The polygon enclosed an area of approximately 40 Km²

Figure 1 - Survey Area

3. Survey Time

The survey was carried out on September 25, 2007, in a single flight.

4. Survey Parameters The survey required 19 flight passes, shown below in Figure 2.

🕫 Plan Survey Grid	
🔽 Lock Flight Lines	
Add New Area Import Areas Create from DXF Remove Area	
Active Area	
Area 1 of 1 H	
Draw Area Edit Corners Generate Box Load from File	
Pass Orientation	
Optimize 0 30 60 90 120 150 180 210 240 270 300 330 360	
Flight Profile LIDAR Settings	
Altitude (m AGL)700Scan Freq (Hz)100Altitude (m AGL)700Scan Freq (Hz)40Pass Heading (deg)269Scan Angle +/-25Overlap (m)268.71Desired Res (m)0.655Speed (m/s)65.8Cross Track Res0.522Turn Time (min)7Down Track Res0.823Passes19PPM^22.33Pass Spacing (m)268.7Scan Cutoff (deg)4	
Survey Totals	
Total Passes 19 Swath Area (km^2) 41.797 Total Length (km) 155.551 A0I Area (km^2) 39.808 Total Flight Time 02:47:49 Total Laser Time 00:39:22 Costs	
C Use Swath Area Cost per Acre 0 Area Cost \$0 Image: C Use ADI Area Cost per Hour 0 Time Cost \$0	
Options Errors DEM Tools Apply Help Export to KML Close	

Figure 2 - Flight lines with planning parameters.

Survey totals appear below in Table 2.

Survey Totals 40

Survey i	otais	
Total Passes	19	
Total Length	155.5 km	
Total Flight Time	04:45	
Total Laser Time	00:51:10	
Total Swath Area	39.8 km ²	
Total AOI Area	54.926 km ²	
Table 2 Survey totals.	Area of Interest	is abbreviated AOI.

LiDAR settings are shown in Table 3.

LiDAR Settings				
Desired Resolution	0.655 m			
Cross Track Resolution	0.522 m			
Down Track Resolution	0.823 m			
Scan Frequency	40 Hz			
Scan Angle	+/- 25 deg			
Scan Cutoff	+/- 4.0 deg			
Scan Offset	0 deg			
System PRF	100 kHz			
Swath Width	537.41 m			
Table 3 LiDAR settings.				

Planned flying altitude was 700 meters AGL (Above Ground Level).

5. GPS Reference Stations

Two independent locations were used for GPS reference stations. One position was located at the Alexander Municipal airport, where NCALM field personnel observed an NGS control monument known as Belair (PID = EQ1063 in NGS database), and the other location was a CORS: station SC01 in Socorro NM. All GPS observations were logged at a 1-second rate and observations from the NCALM airport station were submitted to the NGS on-line processor OPUS with a solution file included as Appendix A. Final coordinates for this reference stations were calculated from the OPUS solutions. Final Coordinates for SC01 were obtained from National Geodetic Survey (NGS).

For further information on OPUS see <u>http://www.ngs.noaa.gov/OPUS/</u> and for more information on the CORS network see <u>http://www.ngs.noaa.gov/CORS/</u> NCALM GPS equipment consisted of ASHTECH (Thales Navigation) Z-Extreme receivers, with choke ring antennas (Part# 700936.D) mounted on 1.500-meter fixed-height tripods.

6. Navigation Processing

Airplane trajectories for this survey were processed using KARS software (Kinematic and Rapid Static) written by Dr. Gerry Mader of the NGS Research Laboratory. The KARS processing engine uses the dual-frequency phase history files of the reference and airborne receivers to determine a fixed integer ionosphere-free differential solution. Each trajectory was processed twice, using both ground reference stations and then coordinate differences between the separate solutions were plotted. Figure 3 is a plot of the differences in Easting, Northing, and Height of two trajectories solutions.

Positional differences in aircraft trajectory as processed from Alexander Airport and SC01

Figure 3 - Positional differences in aircraft trajectories with respect to time as processed from 2 base stations.

	D East	D North	D Up	
Average	-0.001	-0.014	0.053	
Std	0.009	0.010	0.027	
Table 4 Positional difference statistics.				

7. Laser Point Processing and Calibration

After GPS processing was completed for the flight, the final GPS trajectory and the raw IMU (Inertial Measurement Unit) data collected were input into APPLANIX software POSPROC Version 4.3.1. This software employs a Kalman Filter algorithm to combine the 1-Hz final differential GPS solutions with the raw 200-Hz IMU orientation measurement data and their respective error models. The final result is a smoothed and blended solution of both aircraft position and orientation at 200 Hz, in SBET format (Smoothed Best Estimated Trajectory). The SBET, laser range, and mirror-angle measurement data were combined using Optech's DASHMap Version 3.0 processing suite to generate point clouds in selected calibration areas, usually locations where cross-lines were flown or ground truth was collected.

System calibration was then performed as a 2-step process: step one (relative calibration) is to adjust the bore sight values of heading, roll, pitch, and scanner mirror scale such that

systematic positional errors are minimized; and step two is an absolute calibration such that the laser DEM will match the height values of ground truth collected by vehicle-mounted GPS.

Step 1: Relative calibration was performed in TerraMatch software please see (<u>http://terrasolid.fi/ENG/Products.htm</u>) for detailed information.

A general description of the relative calibration procedure follows.

- 1. Cross-lines are flown for every flight with a heading perpendicular to the project flight line heading.
- 2. Small polygons containing these cross lines along with project flight lines are processed using approximate calibration values for heading, roll, pitch, and scanner mirror scale. Each line is processed separately.
- 3. Continuing to process each line separately, all lines are filtered (if necessary) to remove vegetation; then individual flight line surfaces are created.
- 4. Using TerraMatch, an iterative algorithm is applied to compute the bestfit between the individual flight line surfaces: simultaneously solving for the optimal bore sight values of heading, roll, pitch, and scanner mirror scale.
- 5. These updated bore sight values are then entered into DashMap; new output is produced and checked for all flights.
- 6. Complete and final output is run using the optimized calibration values for each flight.

Very stable calibration values were observed during the processing of this flight. Average height differences of 0.04 meters were computed between surfaces created from adjacent flight lines in the calibration areas.

Step 2: Absolute calibration is done by comparing the height of the nearest neighbor laser point to the height of a set of check points that are collected by vehicle-mounted GPS.

Table 5 below shows the difference statistics

Average	0.084
Standard Deviation	0.039
Table 5 Height difference	values statistics

During processing, a scan cutoff angle of 4.0 degrees was used to eliminate points at the edge of the scan lines. This was done to improve the overall DEM accuracy as points farthest from the scan nadir are the most affected by small errors in pitch, roll and scanner mirror angle measurements.

All coordinates were processed with respect to NAD83. The projection is UTM Zone 13, with units in meters. Heights are NAVD88 orthometric heights computed using NGS GEOID03 model. The flight strip point cloud files were tiled into 1 kilometer square blocks with a naming convention using the lower left coordinate (minimum X, Y) as the seed for the file name as follows: Unfiltered_XXXXXX_YYYYYYY for unfiltered point cloud tile (Unfiltered replaced by filtered for filtered point cloud tile). For example if the tile bounds coordinate values from easting equals 317000 through 318000, and northing equals 3809000 through 3810000 then the tile filename is Filtered_317000_3809000.

Figure 4 (below) is an image of the 1 kilometer tile footprints overlaid onto a shaded relief image of the bare-earth Digital Elevation Model (DEM).

Figure 4 - Tile footprints overlaid on a shaded relief image of the bare-earth DEM.

8. Filtering and DEM Production

TerraSolid's TerraScan (<u>http://terrasolid.fi</u>) software was used to classify the ground points from the LiDAR points and generate the "bare-earth" dataset.

1) <u>Removal of Isolated Points</u>: Isolated points routine classifies points which do not have very many other points within a 3Dsearch radius. This routine is useful for finding isolated points up in the air or below the ground.

2) Parameters used for this routine were:

```
Fewer than: 1 point Within: 5m
```

3) <u>Removal of "Low Points"</u>. This routine was used to search for possible error points which are clearly below the ground surface. The elevation of each point (=center) is compared with every other point within a given neighborhood and if the center point is clearly lower then any other point it will be classified as a "low point". This routine can also search for groups of low points where the whole group is lower than other points in the vicinity. The parameters used on this dataset were:

```
Search for: Groups of Points
Max Count (maximum size of a group of low points): 6
More than (minimum height difference): 0.2
Within (xy search range): 3 m
```

4) <u>Ground Classification</u>. This routine classifies ground points by iteratively building a triangulated surface model. The algorithm starts by selecting some local low points assumed as sure hits on the ground, within a specified windows size. This makes the algorithm particularly sensitive to low outliers in the initial dataset, hence the requirement of removing as many erroneous low points as possible in the first step.

The routine builds an initial model from selected low points. Triangles in this initial model are mostly below the ground with only the vertices touching ground. The routine then starts molding the model upwards by iteratively adding new laser points to it. Each added point makes the model follow ground surface more closely. Iteration parameters determine how close a point must be to a triangle plane so that the point can be accepted to the model. Iteration angle is the maximum angle between point, its projection on triangle plane and closest triangle vertex. The smaller the Iteration angle, the less eager the routine is to follow changes in the point cloud. Iteration distance parameter makes sure that the iteration does not make big jumps upwards when triangles are large. This helps to keep low buildings out of the model. The routine can also help avoid adding unnecessary points to the ground model by reducing the eagerness to add new points to ground inside a triangle with all edges shorter than a specified length. Ground classification parameters used:

```
Max Building Size (window size): 10.0 m
Max Terrain Angle: 88
Iteration Angle: 7.0
Iteration Distance: 1.4 m
```

Digital Elevation Models were produced at 1.0 meter spacing for all areas from unfiltered points as well as classified ground points using SURFER (Golden Software) Version 8.04. Interpolation parameters were as follows in Table 5.

Algorithm	Kriging
Variogram	Linear
Nugget Variance	0.15 meters
MicroVariance	0.00 meters
Quadrant Search	4
Search Radius	variable
Minimum points per quadrant	5
Maximum points per quadrant	7
Table 6 - Gridding parameters.	

Digital Elevation Models (DEMs) for both filtered and unfiltered tiles are provided in ESRI format.

APPENDIX A. GPS Reference Station Coordinates from OPUS

NGS OPUS SOLUTION REPORT

USER: RINEX FILE:	michaels@ufl.edu bela268p.07o		DATE: TIME:	November 07 15:37:41 UI	7, 2007 FC
SOFTWARE: EPHEMERIS: NAV FILE: ANT NAME: ARP HEIGHT:	page5 0612.06 maste igs14462.eph [precis brdc2680.07n ASH700936D_M NONE 1.500	r10.pl e]	START: STOP: OBS USED: # FIXED AMB: OVERALL RMS:	2007/09/25 2007/09/25 13707 / 138 41 / 0.010(m)	15:52:00 21:24:00 318 : 99% 41 : 100%
REF FRAME:	NAD_83(CORS96)(EPOCH	:2002.0000) IT	RF00 (EPOCH:	:2007.7336)
х:	-1520999.490(m)	0.010(m)	-1521	000.203(m)	0.010(m)
Υ:	-5028959,297 (m)	0.021 (m)	-5028	957.942 (m)	0.021 (m)
Ζ:	3606793.738(m)	0.028(m)	3606	793.620(m)	0.028(m)
LAT: E LON: W LON: EL HGT: ORTHO HGT:	34 38 56.68707 253 10 19.75880 106 49 40.24120 1556.132 (m) 1578.075 (m)	0.013(m) 0.015(m) 0.015(m) 0.030(m) 0.039(m)	34 38 5 253 10 1 106 49 4 1 [Geoid03 NAVD8	6.70404 9.71660 0.28340 555.168(m) 8]	0.013(m) 0.015(m) 0.015(m) 0.030(m)
Northing (Y) Easting (X) Convergence	UTM COOR UTM (Zo) [meters] 333564 [meters] 33248 [degrees] -1.039	DINATES ne 13) 7.930 7.063 46057	STATE PLANE CO SPC (3002 404799.80 447030.37 -0.3285405	ORDINATES NM C) 6 3 0	
Point Scale	0.999	94587	0.9999345	7	
Combined Fac	ctor 0.999	70167	0.9996903	8	

US NATIONAL GRID DESIGNATOR: 13SCU3248735648 (NAD 83)

BASE STATIONS USED							
PID	DI	ESIGNATION			LATITUDE	LONGITUDE	DISTANCE (m)
DE6386	ZAB1	ALBUQUERQUE	1 CORS ARP		N351024.854	W1063402.414	62883.8
DE8222	ABQ1	ALBUQUERQUE (JSCG1 CORS	ARP	N345726.546	W1062940.038	45842.2
DG7420	P034	SANDIA_ASLNM2	2004 CORS .	ARP	N345644.212	W1062733.318	47129.3
		NEAREST	NGS PUBLI	SHED CO	NTROL POINT		
E01063		BELAIR			N343856.686	W1064940.241	0.0

This position and the above vector components were computed without any knowledge by the National Geodetic Survey regarding the equipment or field operating procedures used.