## Ground Survey Report, Lidar Accuracy Report, & Project Report New Madrid Seismic Zone Northeast of Memphis, Tennessee Contract Number: W91278-09D-0049/004 EN Project: C-10-026

# **Contact**

Metro Engineering and Surveying Co., Inc. Stacy Lunsford 186 Selfridge Road Hampton, Georgia 30228 Tel.: 770-707-0777

## **Location**

Sites are located along the Mississippi River in southeast Missouri, southwest Kentucky, west Tennessee, and northeast Arkansas.



# Field survey & GPS

### <u>Dates</u>

Field survey was performed between April 22, 2010 and April 27, 2010.

#### Methods and Procedures

Using N.G.S. datasheets, Metro recovered known monumentation to be used to establish the primary control network. Static G.P.S methods were applied to establish three (3) primary control points. (Control Points LBC1, CT3, and CT8) These three primary control points were occupied simultaneously with G.P.S. receivers while static G.P.S. rovers occupied

N.G.S. monuments. Each N.G.S. monument had a two hour static G.P.S session. There were a total of five (5) known positions occupied to establish the Primary G.P.S. Network.

Ground control points were established utilizing Static G.P.S. methods. The three primary control points were occupied simultaneously with G.P.S. receivers while static G.P.S. rovers occupied the ground control points. Each ground control point had a one hour static G.P.S session. There were a total of nine (9) ground control points occupied to establish a secondary G.P.S. Network.

Azimuth marks were also occupied during the secondary network survey to be used for the collection of test points within vegetation categories.

Static G.P.S. data was processed and adjusted using Trimble Geomatics Office software.

Final horizontal datum is U.T.M. 16, WGS84 and vertical datum is WGS84 ellipsoid.

Equipment used for the G.P.S. surveys were Trimble 4000 series receivers and Trimble R8 receivers.

Static G.P.S. data files were uploaded to OPUS. The coordinate values determined from the OPUS solutions for the ground control points were compared to the coordinate values determined from the static surveys. See the following table for Q.C. results.

| Static S | Static Survey Solution |            |        | OPUS Solution |          |             |            | Meters |        |        |         |
|----------|------------------------|------------|--------|---------------|----------|-------------|------------|--------|--------|--------|---------|
| Point    | North                  | East       | Elev   |               | Point    | North       | East       | Elev   | N. Res | E. Res | Z. Res. |
| LBC1     | 4064217.562            | 275705.296 | 65.254 |               | LBC1     | 4064217.556 | 275705.297 | 65.285 | 0.006  | -0.001 | -0.031  |
| CT3      | 4057501.302            | 274676.715 | 61.305 |               | CT3      | 4057501.292 | 274676.717 | 61.319 | 0.010  | -0.002 | -0.014  |
| CT8      | 4073475.511            | 282702.765 | 63.705 |               | CT8      | 4073475.513 | 282702.751 | 63.716 | -0.002 | 0.014  | -0.011  |
| SP3 2000 | 4067859.449            | 303389.268 | 70.638 |               | SP3 2000 | 4067859.421 | 303389.243 | 70.667 | 0.028  | 0.025  | -0.029  |
| KEWANE   | 4061515.029            | 271046.636 | 65.555 |               | KEWANE   | 4061515.039 | 271046.615 | 65.630 | -0.010 | 0.021  | -0.075  |
| SIK A    | 4085983.091            | 271340.179 | 66.472 |               | SIK A    | 4085983.095 | 271340.227 | 66.540 | -0.004 | -0.048 | -0.068  |

## **Collection of Test Points**

Test points were collected using conventional surveying methods in two different areas on this project. Using the control points established during the G.P.S. surveys, test points were collected at these two locations for "bare earth", "low grass", "crops", "tall grass" and "asphalt" categories.

Conventional survey data was collected using a Leica Robotic TCRA 1105 total station with TDS Pro field surveying software on board. The field data files were post processed using Terramodel surveying software.

The vertical accuracy reports for the varying surface classifications were generated using independent check points.

The following reports reflect the accuracy by comparing the field surveyed Check Point elevations (independent) to the LiDAR generated DEM (test)..



# **Collection of LiDAR**

Receivers were setup on established project control points and GPS observations were collected during the flight. The flight took place when the PDOP was below 3 on the dates of: July 7<sup>th</sup>, 2010 & September 29<sup>th</sup>, 2010.

The Harrier 56/G3 LiDAR Sensor mounted in our Commander 500B fixed wing airplane was used on this project with

the following parameters:

Flight Height: 488m (AGL) Flight Speed: 113 knots Scanner Pulse Rate: 180 kHz Sidelap: 51.0 % Viewing Angle: 60 deg Swath Width: 560m Point Density: 4.1 pts/sqm



Positional Information for the flight was captured during flight. The airborne GPS data was processed for the flight positional information. The GPS and Applanix IMU data was processed using Industry Standard software and procedures using Applanix PosPac 4.2 processed forward and backward for a Smoothed Best Estimate Trajectory (SBET) file. Laser Ranging data was processed with Rianaylse 5.01. The SBET file was merged with the laser ranging data using TOPIT 1.0 to produce a raw LAS 1.2 file. All data was processed to U.T.M. 16, WGS84 and vertical datum WGS84.

### **Classification**

A TerraScan project was created allowing LAS files to be tiled into manageable sizes. The bald earth was extracted from the raw LiDAR points using Terrascan software. The vegetation removal process was performed by building an iterative surface model. This surface model was generated using three main parameters: Building size (processing footprint), Iteration angle and Iteration distance.

The initial model was based upon low points selected by a roaming window and were assumed to be ground points. The size of this roaming window is determined by the building size parameter. These low points were triangulated and the remaining points evaluated and subsequently added to the model when meeting the Iteration angle and distance constraints. This process was repeated until no additional points were added within iteration.

Following the data setup, the manual quality control of the surface was accomplished. This process consisted of visually examining the LiDAR points within Terrascan and correcting errors that occurred during the automated process. These corrections include verifying that all non ground elements are removed from the ground model and that all small terrain undulations such as road beds, retaining walls, dikes, rock cuts and hill tops are present within the model. This process was done with the help of hill shades, contours, profiles and cross-sections.

The tile size utilized in TerraScan for this project was 1 km2 x 1 km2. Basic classification to extract ground, lowmedium-high vegetation and buildings, was run on each individual flight lines in a macro mode. An "Output Control Report" was generated for each individual flight line, using the field run truing points to analyze any adjustment needs. Surface to surface comparison (from flight line to flight line) was generated in the overlapping areas of the flight lines using "colorized isopachs" with a vertical scale of .5' above and below. Cross sections were cut in designated areas (at cross strips and at mid point of flight lines where overlap occurs) to inspect the flight lines before, during and after the calibration of flight lines. Once the initial assessment was completed TerraMatch was utilized to solve for **dz** on individual lines for calibrating the strips vertically to all of the truing points. Again, at the designated cross sections, the data was assessed and evaluated for vertical matching between flight lines. No further calibration was needed vertically, and the data set was inspected for the horizontal including: roll, pitch and heading between flight lines. Another surface to surface comparison was generated in the overlapping areas of the flight lines using "colorized isopachs" with a vertical scale of .5' above and below for verification. The vertical

accuracy reports for the varying surface classifications were generated using independent check points.

The following reports reflect the accuracy by comparing the field surveyed Check Point elevations (independent) to

the LiDAR generated DEM (test).

# **Vertical Accuracy Statistic Worksheet**

35951

| Bare Earth |
|------------|
|------------|

| -      | _            |               | _      |           | _               |        |
|--------|--------------|---------------|--------|-----------|-----------------|--------|
| Α      | В            | C             | D      | E         | F               |        |
| Point  | Point        | Z             | z      |           |                 |        |
| number | description  | (independent) | (test) | diff in z | $(diff in z)^2$ |        |
| 212    | CULTIV-FIELD | 63.75         | 63.79  | -0.03     | 0.0012          |        |
| 213    | CULTIV-FIELD | 63.75         | 63.75  | 0.00      | 0.0000          |        |
| 214    | CULTIV-FIELD | 63.66         | 63.64  | 0.01      | 0.0002          |        |
| 215    | CULTIV-FIELD | 63.51         | 63.51  | -0.01     | 0.0000          |        |
| 216    | CULTIV-FIELD | 63.50         | 63.53  | -0.03     | 0.0009          |        |
| 217    | CULTIV-FIELD | 63.62         | 63.67  | -0.05     | 0.0025          |        |
| 218    | CULTIV-FIELD | 63.66         | 63.65  | 0.01      | 0.0001          |        |
| 219    | CULTIV-FIELD | 63.69         | 63.68  | 0.01      | 0.0002          |        |
| 220    | CULTIV-FIELD | 63.76         | 63.78  | -0.01     | 0.0002          |        |
| 221    | CULTIV-FIELD | 64.00         | 64.00  | 0.00      | 0.0000          |        |
| 222    | CULTIV-FIELD | 63.85         | 63.90  | -0.05     | 0.0022          |        |
| 223    | CULTIV-FIELD | 63.90         | 63.96  | -0.06     | 0.0031          |        |
| 224    | CULTIV-FIELD | 63.71         | 63.72  | -0.02     | 0.0003          |        |
| 225    | CULTIV-FIELD | 63.68         | 63.68  | -0.01     | 0.0000          |        |
| 226    | CULTIV-FIELD | 63.64         | 63.68  | -0.04     | 0.0018          |        |
| 227    | CULTIV-FIELD | 63.69         | 63.66  | 0.03      | 0.0009          |        |
|        |              |               |        | sum       | 0.013642        |        |
|        |              |               |        | average   | 0.00085263      |        |
|        |              |               |        | RMSE      | 0.02919974      |        |
|        |              |               |        | NSSDA     | 0.0572315       | 2 Sigm |

# **Vertical Accuracy Statistic Worksheet**

35951

| Low | Grass |
|-----|-------|
|-----|-------|

|        | 133         |               |        |           |                          |
|--------|-------------|---------------|--------|-----------|--------------------------|
| Α      | В           | С             | D      | E         | F                        |
| Point  | Point       | Z             | z      |           |                          |
| number | description | (independent) | (test) | diff in z | (diff in z) <sup>2</sup> |
| 200    | LOWGRASS    | 63.69         | 63.73  | -0.04     | 0.0019                   |
| 201    | LOWGRASS    | 64.09         | 64.13  | -0.04     | 0.0018                   |
| 202    | LOWGRASS    | 64.70         | 64.76  | -0.06     | 0.0035                   |
| 203    | LOWGRASS    | 64.42         | 64.46  | -0.05     | 0.0023                   |
| 204    | LOWGRASS    | 64.14         | 64.15  | -0.01     | 0.0001                   |

|        | 0.0031      | -0.06   | 64.56 | 64.50 | LOWGRASS | 205 |
|--------|-------------|---------|-------|-------|----------|-----|
|        | 0.0000      | 0.00    | 65.52 | 65.52 | LOWGRASS | 206 |
|        | 0.0023      | -0.05   | 65.46 | 65.41 | LOWGRASS | 207 |
|        | 0.0032      | -0.06   | 65.80 | 65.74 | LOWGRASS | 208 |
|        | 0.0030      | -0.05   | 65.69 | 65.63 | LOWGRASS | 209 |
|        | 0.0010      | 0.03    | 65.81 | 65.84 | LOWGRASS | 210 |
|        | 0.0010      | -0.03   | 65.15 | 65.12 | LOWGRASS | 211 |
|        | 0.0019      | -0.04   | 61.12 | 61.08 | LOWGRASS | 284 |
|        | 0.0034      | -0.06   | 61.26 | 61.20 | LOWGRASS | 285 |
|        | 0.0037      | -0.06   | 61.22 | 61.16 | LOWGRASS | 286 |
|        | 0.0032      | -0.06   | 61.16 | 61.10 | LOWGRASS | 287 |
|        | 0.0001      | -0.01   | 61.05 | 61.04 | LOWGRASS | 288 |
|        | 0.0021      | -0.05   | 61.11 | 61.07 | LOWGRASS | 289 |
|        | 0.0042      | -0.06   | 61.14 | 61.08 | LOWGRASS | 290 |
|        | 0.0016      | -0.04   | 61.07 | 61.03 | LOWGRASS | 291 |
|        | 0.0015      | -0.04   | 61.10 | 61.06 | LOWGRASS | 292 |
|        | 0.0010      | -0.03   | 61.03 | 61.00 | LOWGRASS | 293 |
|        | 0.0020      | -0.05   | 61.03 | 60.99 | LOWGRASS | 294 |
|        | 0.0022      | -0.05   | 61.11 | 61.06 | LOWGRASS | 295 |
|        | 0.0034      | -0.06   | 61.09 | 61.04 | LOWGRASS | 296 |
|        | 0.0025      | -0.05   | 61.13 | 61.08 | LOWGRASS | 297 |
|        | 0.0008      | -0.03   | 61.07 | 61.04 | LOWGRASS | 298 |
|        | 0.0018      | -0.04   | 61.04 | 61.00 | LOWGRASS | 299 |
|        | 0.0588330   | sum     |       |       |          |     |
|        | 0.002101179 | average |       |       |          |     |
|        | 0.045838614 | RMSE    |       |       |          |     |
| 2 Sign | 0.089843684 | NSSDA   |       |       |          |     |
|        |             |         |       |       |          |     |

# Vertical Accuracy Statistic Worksheet Tall Grass

35951

| Α      | В           | С             | D      | Е         | F                        |
|--------|-------------|---------------|--------|-----------|--------------------------|
| Point  | Point       | Z             | z      |           |                          |
| number | description | (independent) | (test) | diff in z | (diff in z) <sup>2</sup> |
| 272    | TALL-GRASS  | 61.38         | 61.45  | -0.07     | 0.0045                   |
| 273    | TALL-GRASS  | 61.42         | 61.48  | -0.05     | 0.0027                   |
| 274    | TALL-GRASS  | 61.43         | 61.49  | -0.07     | 0.0042                   |
| 275    | TALL-GRASS  | 61.43         | 61.49  | -0.06     | 0.0041                   |
| 276    | TALL-GRASS  | 61.42         | 61.48  | -0.07     | 0.0045                   |
| 277    | TALL-GRASS  | 61.44         | 61.50  | -0.05     | 0.0030                   |
| 278    | TALL-GRASS  | 61.15         | 61.21  | -0.07     | 0.0046                   |
| 279    | TALL-GRASS  | 61.17         | 61.18  | -0.01     | 0.0001                   |
| 280    | TALL-GRASS  | 61.21         | 61.17  | 0.04      | 0.0018                   |
| 281    | TALL-GRASS  | 61.23         | 61.20  | 0.03      | 0.0008                   |
| 282    | TALL-GRASS  | 61.26         | 61.25  | 0.01      | 0.0002                   |
| 283    | TALL-GRASS  | 61.21         | 61.26  | -0.04     | 0.0018                   |
|        |             |               |        | sum       | 0.032233                 |
|        |             |               |        | average   | 0.00268608               |
|        |             |               |        | RMSE      | 0.05182744               |

# **Vertical Accuracy Statistic Worksheet**

35951

| Asphalt |             |               |        |           |                          |
|---------|-------------|---------------|--------|-----------|--------------------------|
| Α       | В           | С             | D      | Е         | F                        |
| Point   | Point       | Z             | z      |           |                          |
| number  | description | (independent) | (test) | diff in z | (diff in z) <sup>2</sup> |
| 228     | CLRD-ASP    | 63.968        | 64.046 | -0.078    | 0.0061                   |
| 229     | CLRD-ASP    | 63.920        | 64.001 | -0.081    | 0.0066                   |
| 230     | CLRD-ASP    | 63.910        | 64.002 | -0.092    | 0.0085                   |
| 231     | CLRD-ASP    | 63.878        | 63.967 | -0.089    | 0.0079                   |
| 232     | CLRD-ASP    | 63.925        | 63.938 | -0.013    | 0.0002                   |
| 233     | CLRD-ASP    | 63.858        | 63.914 | -0.056    | 0.0031                   |
| 234     | CLRD-ASP    | 63.803        | 63.853 | -0.050    | 0.0025                   |
| 235     | CLRD-ASP    | 63.633        | 63.699 | -0.066    | 0.0044                   |
| 236     | CLRD-ASP    | 63.490        | 63.540 | -0.050    | 0.0025                   |
| 237     | CLRD-ASP    | 63.344        | 63.403 | -0.059    | 0.0035                   |
| 262     | CLRD-ASP    | 61.487        | 61.534 | -0.047    | 0.0022                   |
| 263     | CLRD-ASP    | 61.476        | 61.534 | -0.058    | 0.0034                   |
| 264     | CLRD-ASP    | 61.478        | 61.523 | -0.045    | 0.0020                   |
| 265     | CLRD-ASP    | 61.471        | 61.495 | -0.024    | 0.0006                   |
| 266     | CLRD-ASP    | 61.468        | 61.522 | -0.054    | 0.0029                   |
| 267     | CLRD-ASP    | 61.496        | 61.518 | -0.022    | 0.0005                   |
| 268     | CLRD-ASP    | 61.470        | 61.486 | -0.016    | 0.0003                   |
| 269     | CLRD-ASP    | 61.491        | 61.513 | -0.022    | 0.0005                   |
| 270     | CLRD-ASP    | 61.507        | 61.526 | -0.019    | 0.0004                   |
| 271     | CLRD-ASP    | 61.468        | 61.495 | -0.027    | 0.0007                   |
|         |             |               |        | sum       | 0.058576                 |
|         |             |               |        | average   | 0.0029288                |
|         |             |               |        | RMSE      | 0.05411839               |
|         |             |               |        | NSSDA     | 0.10607204               |